The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 

Links

 

Gene Review

SAG  -  S-antigen; retina and pineal gland (arrestin)

Homo sapiens

Synonyms: 48 kDa protein, ARRESTIN, RP47, Retinal S-antigen, Rod photoreceptor arrestin, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of SAG

 

Psychiatry related information on SAG

  • As a group, the anti-68/48 kDa-positive CFS patients presented more frequently with hypersomnia (P<0.005), short-term amnesia (P<0.07) or difficulty in concentration (P<0.05) than those CFS patients without the antibodies [5].
 

High impact information on SAG

  • Peripheral blood lymphocytes from the seven cyclosporin A responsive patients, but not those from the non-responder, gave positive in-vitro blastogenic responses to the retinal S-antigen, a highly uveitogenic organ-specific material [6].
  • PIDD (p53-induced protein with a death domain) is constitutively processed giving rise to a 48-kDa N-terminal fragment containing the leucine-rich repeats (LRRs, PIDD-N) and a 51-kDa C-terminal fragment containing the death domain (DD, PIDD-C) [7].
  • In addition to MHC class I and II antigens, intestinal epithelia constitutively express the nonclassical MHC molecule CD1d, a transmembrane molecule with a short cytoplasmic tail expressed as a beta(2)-microglobulin-associated 48-kDa glycoprotein and novel beta(2)-microglobulin-independent 37-kDa nonglycosylated protein on intestinal epithelia [8].
  • In response to wounding, a 48-kDa myelin basic protein (MBP) kinase is activated within 2 min, both locally and systemically, in leaves of young tomato plants [9].
  • In def1, a mutant tomato line having a defective octadecanoid pathway, the 48-kDa MBP kinase is activated by wounding and systemin as in the wild-type plants [9].
 

Chemical compound and disease context of SAG

 

Biological context of SAG

  • The complete amino acid sequence of human retinal S-antigen (48 kDa protein), a retinal protein involved in the visual process has been determined by cDNA sequencing [15].
  • DNA sequence analysis of 75 V beta 8 cDNA clones from uveitogenic T cell lines revealed that, of 20 V beta 8 clones isolated from SAg-specific T cell lines, all were V beta 8.2 TCR, whereas among 55 V beta 8 clones from IRBP-specific lines, 36 were V beta 8.2 and 19 were V beta 8 [1].
  • In isolated blowfly rhabdoms photoconversion of P to M affects bacterial toxin-catalyzed ADP-ribosylation of a 41-kDa protein, activates phosphorylation of opsin and induces the binding of a 48-kDa phosphoprotein to the rhabdomeric membrane [16].
  • Autoimmune responses toward retinal S antigen are often observed in patients with retinal inflammatory disease, however, these responses are usually secondary to local tissue damage [17].
  • We previously purified a 48-kDa protein (p48) that specifically reacts with an antiserum directed against the 12 carboxyl-terminal amino acids of the c-myc gene product [18].
 

Anatomical context of SAG

 

Associations of SAG with chemical compounds

  • Cellular immune response to retinal S-antigen and interphotoreceptor retinoid-binding protein fragments in Eales' disease patients [21].
  • A 48-kDa MBP kinase is also activated by the 18-amino acid polypeptide systemin, a potent wound signal for the synthesis of systemic wound response proteins (swrps) [9].
  • A 48-kDa MBP kinase activity also increases in response to polygalacturonic acid and chitosan but not in response to jasmonic acid or phytodienoic acid [9].
  • The human protein tyrosine phosphatase TCPTP exists as two forms: an endoplasmic reticulum-targeted 48-kDa form (TC48) and a nuclear 45-kDa form (TC45) [22].
  • At 30 sec after glutamate stimulation, 32P incorporation into the 87-kDa and 48-kDa proteins peaked (240% and 170% basal levels, respectively), and by 2 min, phosphorylation of the 87-kDa protein had returned to basal levels, while that of the 48-kDa protein decreased but remained above control levels [23].
 

Physical interactions of SAG

 

Enzymatic interactions of SAG

  • Here, we demonstrate that human RAD21 is preferentially cleaved at Asp(279) by caspases-3 and -7 in vitro to generate two major proteolytic products of approximately 65 and 48 kDa [29].
  • Additional 63- and 48-kDa phosphorylated fragments are generated upon trypsin treatment of EGF receptor from EGF-treated cells [30].
 

Regulatory relationships of SAG

  • Photoaffinity labeling of CCR1 and CCR5 receptors stably expressed in CHO cells resulted in specific covalent attachment of [(125)I]BP-MIP-1alpha and production of protein complexes of 54 and 48 kDa, respectively, on SDS-PAGE [31].
  • Fifteen monoclonal antibodies against the 52/48-kDa fragment inhibited von Willebrand factor binding to collagen [32].
 

Other interactions of SAG

 

Analytical, diagnostic and therapeutic context of SAG

References

  1. Evidence for selective accumulation of V beta 8+ T lymphocytes in experimental autoimmune uveoretinitis induced with two different retinal antigens. Egwuagu, C.E., Mahdi, R.M., Nussenblatt, R.B., Gery, I., Caspi, R.R. J. Immunol. (1993) [Pubmed]
  2. Differential expression of retinal proteins in a pineal parenchymal tumor. Lopes, M.B., Gonzalez-Fernandez, F., Scheithauer, B.W., VandenBerg, S.R. J. Neuropathol. Exp. Neurol. (1993) [Pubmed]
  3. Cell-mediated immunity against human retinal extract, S-antigen, and interphotoreceptor retinoid binding protein in onchocercal chorioretinopathy. Van der Lelij, A., Rothova, A., Stilma, J.S., Hoekzema, R., Kijlstra, A. Invest. Ophthalmol. Vis. Sci. (1990) [Pubmed]
  4. Interferon-gamma enhances the expression of retinal S-antigen, a specific neuronal cell marker. Hooks, J.J., Chader, G., Evans, C.H., Detrick, B. J. Neuroimmunol. (1990) [Pubmed]
  5. Autoantibodies to a 68/48 kDa protein in chronic fatigue syndrome and primary fibromyalgia: a possible marker for hypersomnia and cognitive disorders. Nishikai, M., Tomomatsu, S., Hankins, R.W., Takagi, S., Miyachi, K., Kosaka, S., Akiya, K. Rheumatology (Oxford, England) (2001) [Pubmed]
  6. Treatment of intraocular inflammatory disease with cyclosporin A. Nussenblatt, R.B., Palestine, A.G., Rook, A.H., Scher, I., Wacker, W.B., Gery, I. Lancet (1983) [Pubmed]
  7. Autoproteolysis of PIDD marks the bifurcation between pro-death caspase-2 and pro-survival NF-kappaB pathway. Tinel, A., Janssens, S., Lippens, S., Cuenin, S., Logette, E., Jaccard, B., Quadroni, M., Tschopp, J. EMBO J. (2007) [Pubmed]
  8. Ligation of intestinal epithelial CD1d induces bioactive IL-10: critical role of the cytoplasmic tail in autocrine signaling. Colgan, S.P., Hershberg, R.M., Furuta, G.T., Blumberg, R.S. Proc. Natl. Acad. Sci. U.S.A. (1999) [Pubmed]
  9. Myelin basic protein kinase activity in tomato leaves is induced systemically by wounding and increases in response to systemin and oligosaccharide elicitors. Stratmann, J.W., Ryan, C.A. Proc. Natl. Acad. Sci. U.S.A. (1997) [Pubmed]
  10. Cellular immune response to retinal S-antigen & interphotoreceptor retinoid binding protein fragments in idiopathic human uveitis. Rajasingh, J., Singh, V.K., Singh, V., Sharma, K., Agarwal, S.S. Indian J. Med. Res. (1996) [Pubmed]
  11. Abundant early expression of gpUL4 from a human cytomegalovirus mutant lacking a repressive upstream open reading frame. Alderete, J.P., Child, S.J., Geballe, A.P. J. Virol. (2001) [Pubmed]
  12. Two-site immunoenzymometric assay for the 52-kDa cathepsin D in cytosols of breast cancer tissues. Rogier, H., Freiss, G., Besse, M.G., Cavalié-Barthez, G., Garcia, M., Pau, B., Rochefort, H., Paolucci, F. Clin. Chem. (1989) [Pubmed]
  13. Purification and characterization of protein PC, a component of glycine reductase from Eubacterium acidaminophilum. Schräder, T., Andreesen, J.R. Eur. J. Biochem. (1992) [Pubmed]
  14. Folate coenzyme and antifolate transport proteins in normal and neoplastic cells. Freisheim, J.H., Price, E.M., Ratnam, M. Adv. Enzyme Regul. (1989) [Pubmed]
  15. The sequence of human retinal S-antigen reveals similarities with alpha-transducin. Yamaki, K., Tsuda, M., Shinohara, T. FEBS Lett. (1988) [Pubmed]
  16. Light-modulated ADP-ribosylation, protein phosphorylation and protein binding in isolated fly photoreceptor membranes. Bentrop, J., Paulsen, R. Eur. J. Biochem. (1986) [Pubmed]
  17. Eye diseases and proteins controlling visual transduction. Vadot, E. Biochimie (1987) [Pubmed]
  18. Molecular cloning and nucleotide sequence of a full-length cDNA for human alpha enolase. Giallongo, A., Feo, S., Moore, R., Croce, C.M., Showe, L.C. Proc. Natl. Acad. Sci. U.S.A. (1986) [Pubmed]
  19. Low molecular mass phosphoproteins from the frog rod outer segments form a complex with 48 kDa protein. Krapivinsky, G.B., Malenyov, A.L., Zaikina, I.V., Fesenko, E.E. Cell. Signal. (1992) [Pubmed]
  20. A synthetic peptide defines a serologic IgA response to a human papillomavirus-encoded nuclear antigen expressed in virus-carrying cervical neoplasia. Dillner, J., Dillner, L., Robb, J., Willems, J., Jones, I., Lancaster, W., Smith, R., Lerner, R. Proc. Natl. Acad. Sci. U.S.A. (1989) [Pubmed]
  21. Cellular immune response to retinal S-antigen and interphotoreceptor retinoid-binding protein fragments in Eales' disease patients. Saxena, S., Rajasingh, J., Biswas, S., Kumar, D., Shinohara, T., Singh, V.K. Pathobiology (1999) [Pubmed]
  22. Regulation of insulin receptor signaling by the protein tyrosine phosphatase TCPTP. Galic, S., Klingler-Hoffmann, M., Fodero-Tavoletti, M.T., Puryer, M.A., Meng, T.C., Tonks, N.K., Tiganis, T. Mol. Cell. Biol. (2003) [Pubmed]
  23. Glutamate-stimulated protein phosphorylation in cultured hippocampal pyramidal neurons. Scholz, W.K., Palfrey, H.C. J. Neurosci. (1991) [Pubmed]
  24. Epitopes and idiotypes in experimental autoimmune uveitis: a review. Dua, H.S., Abrams, M., Barrett, J.A., Gregerson, D.S., Forrester, J.V., Donoso, L.A. Curr. Eye Res. (1992) [Pubmed]
  25. FAP48, a new protein that forms specific complexes with both immunophilins FKBP59 and FKBP12. Prevention by the immunosuppressant drugs FK506 and rapamycin. Chambraud, B., Radanyi, C., Camonis, J.H., Shazand, K., Rajkowski, K., Baulieu, E.E. J. Biol. Chem. (1996) [Pubmed]
  26. Subunit of an alpha-interferon-responsive transcription factor is related to interferon regulatory factor and Myb families of DNA-binding proteins. Veals, S.A., Schindler, C., Leonard, D., Fu, X.Y., Aebersold, R., Darnell, J.E., Levy, D.E. Mol. Cell. Biol. (1992) [Pubmed]
  27. Regulation of macrophage receptor-bound plasmin by autoproteolysis. Falcone, D.J., Borth, W., McCaffrey, T.A., Mathew, J., McAdam, K. J. Biol. Chem. (1994) [Pubmed]
  28. A heparin-binding domain of human von Willebrand factor. Characterization and localization to a tryptic fragment extending from amino acid residue Val-449 to Lys-728. Fujimura, Y., Titani, K., Holland, L.Z., Roberts, J.R., Kostel, P., Ruggeri, Z.M., Zimmerman, T.S. J. Biol. Chem. (1987) [Pubmed]
  29. Caspase proteolysis of the cohesin component RAD21 promotes apoptosis. Chen, F., Kamradt, M., Mulcahy, M., Byun, Y., Xu, H., McKay, M.J., Cryns, V.L. J. Biol. Chem. (2002) [Pubmed]
  30. Characterization of structural domains of the human epidermal growth factor receptor obtained by partial proteolysis. Chinkers, M., Brugge, J.S. J. Biol. Chem. (1984) [Pubmed]
  31. Synthesis and characterization of fluorescent and photoactivatable MIP-1alpha ligands and interactions with chemokine receptors CCR1 and CCR5. Zoffmann, S., Turcatti, G., Galzi, J., Dahl, M., Chollet, A. J. Med. Chem. (2001) [Pubmed]
  32. Isolation and characterization of a collagen binding domain in human von Willebrand factor. Pareti, F.I., Fujimura, Y., Dent, J.A., Holland, L.Z., Zimmerman, T.S., Ruggeri, Z.M. J. Biol. Chem. (1986) [Pubmed]
  33. Cone arrestin identified by targeting expression of a functional family. Craft, C.M., Whitmore, D.H., Wiechmann, A.F. J. Biol. Chem. (1994) [Pubmed]
  34. Functional desensitization of the isolated beta-adrenergic receptor by the beta-adrenergic receptor kinase: potential role of an analog of the retinal protein arrestin (48-kDa protein). Benovic, J.L., Kühn, H., Weyand, I., Codina, J., Caron, M.G., Lefkowitz, R.J. Proc. Natl. Acad. Sci. U.S.A. (1987) [Pubmed]
  35. Inactivation of photoexcited rhodopsin in retinal rods: the roles of rhodopsin kinase and 48-kDa protein (arrestin). Bennett, N., Sitaramayya, A. Biochemistry (1988) [Pubmed]
  36. Tyrosine-phosphorylated Stat1 and Stat2 plus a 48-kDa protein all contact DNA in forming interferon-stimulated-gene factor 3. Qureshi, S.A., Salditt-Georgieff, M., Darnell, J.E. Proc. Natl. Acad. Sci. U.S.A. (1995) [Pubmed]
  37. Mutant cell lines unresponsive to alpha/beta and gamma interferon are defective in tyrosine phosphorylation of ISGF-3 alpha components. Loh, J.E., Schindler, C., Ziemiecki, A., Harpur, A.G., Wilks, A.F., Flavell, R.A. Mol. Cell. Biol. (1994) [Pubmed]
  38. Autoantibodies against a serine tRNA-protein complex implicated in cotranslational selenocysteine insertion. Gelpi, C., Sontheimer, E.J., Rodriguez-Sanchez, J.L. Proc. Natl. Acad. Sci. U.S.A. (1992) [Pubmed]
  39. Negative and translation termination-dependent positive control of FLI-1 protein synthesis by conserved overlapping 5' upstream open reading frames in Fli-1 mRNA. Sarrazin, S., Starck, J., Gonnet, C., Doubeikovski, A., Melet, F., Morle, F. Mol. Cell. Biol. (2000) [Pubmed]
  40. Coxsackievirus protein 2BC blocks host cell apoptosis by inhibiting caspase-3. Salako, M.A., Carter, M.J., Kass, G.E. J. Biol. Chem. (2006) [Pubmed]
  41. Biochemical characterization of aspartyl phosphate phosphatase interaction with a phosphorylated response regulator and its inhibition by a pentapeptide. Ishikawa, S., Core, L., Perego, M. J. Biol. Chem. (2002) [Pubmed]
 
WikiGenes - Universities