The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Tilapia

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Tilapia

 

Psychiatry related information on Tilapia

 

High impact information on Tilapia

  • To address this issue, we developed a technology integrating laser-captured microdissection of single digoxigenin-labeled pituitary cells coupled with real-time quantitative PCR to examine the expression profiles of three endogenous GnRH-R types (R1, R2, and R3) in immature and mature males of tilapia Oreochromis niloticus [7].
  • Kidney-specific chloride channel, OmClC-K, predominantly expressed in the diluting segment of freshwater-adapted tilapia kidney [8].
  • Tilapia GH (tGH) and tPRL177 stimulated sulfate uptake at the highest doses examined [9].
  • By using an expression cloning strategy, we isolated a single positive clone encoding a tilapia prolactin (PRL) receptor [10].
  • The tilapia PRL receptor is a mature protein of 606 amino acids [10].
 

Chemical compound and disease context of Tilapia

 

Biological context of Tilapia

 

Anatomical context of Tilapia

  • We examined the effects of injecting homologous GH or the two homologous tilapia PRLs (tPRL177 and tPRL188) on the in vitro incorporation of [35S] sulfate (extracellular matrix synthesis) and [3H]thymidine (DNA synthesis) by ceratobranchial cartilage explants and on IGF-I mRNA levels in tilapia liver [9].
  • The level of ppMCH mRNA expression in tilapia hypothalamus, measured by dot blot analysis, was significantly higher in fish adapted to a white background than in black-adapted animals, which is in accordance with the reported MCH plasma and tissue concentrations in fish [21].
  • On the other hand, nuclei of rooster and tilapia spermatozoa and those of immature hamster and mouse spermatozoa, which are not stabilized by protamine disulfide bonds, were sensitive to heating; although some of them decondensed after exposure to 90 degrees C, none formed male pronuclei [22].
  • We also examined functional characteristics of tilapia AQP3 using Xenopus oocytes as an in vitro transcribed cRNA expression system [23].
  • Mitochondria-rich cell activity in the yolk-sac membrane of tilapia (Oreochromis mossambicus) larvae acclimatized to different ambient chloride levels [24].
 

Associations of Tilapia with chemical compounds

 

Gene context of Tilapia

  • Immune localization of prolactin receptor in the mitochondria-rich cells of the euryhaline teleost (Oreochromis mossambicus) gill [30].
  • TSHR sequence comparisons were sought for an additional eight mammals as well as four (two Salmon, Tilapia, and Sea Bass) from teleosts [31].
  • Various degrees of dissociation of NADPHd activity and nNOS immunoreactivity have been detected that could be attributed to the expression of different subtypes of nNOS in the preoptic/hypothalamo/hypophysial system of tilapia [32].
  • Except for the 39th residue, both tilapia cDNA sequences showed significant identity to human, bovine, murine, fugu, and zebrafish TIP39 [33].
  • Thus, a novel regulatory mechanism of GH secretion by gastric ghrelin seems to be conserved in the tilapia [34].
 

Analytical, diagnostic and therapeutic context of Tilapia

References

  1. Estimation of the niacin requirements for tilapia fed diets containing glucose or dextrin. Shiau, S.Y., Suen, G.S. J. Nutr. (1992) [Pubmed]
  2. Effect of glucose toxicity on intraportal tilapia islet xenotransplantation in nude mice. Al-Jazaeri, A., Xu, B.Y., Yang, H., Macneil, D., Leventhal, J.R., Wright, J.R. Xenotransplantation (2005) [Pubmed]
  3. Degranulation of eosinophilic granular cells with possible involvement in neutrophil migration to site of inflammation in tilapia. Matsuyama, T., Iida, T. Dev. Comp. Immunol. (1999) [Pubmed]
  4. Atrial tachyarrhythmias induced by acetylcholine in tilapia (Oreochromis sp.) isolated atria. Lin, T.C., Hou, Z.Y., Liu, H.W., Wu, H.S., Lin, C.I. Clin. Exp. Pharmacol. Physiol. (2000) [Pubmed]
  5. Hypothyroidism induces type I iodothyronine deiodinase expression in tilapia liver. Van der Geyten, S., Toguyeni, A., Baroiller, J.F., Fauconneau, B., Fostier, A., Sanders, J.P., Visser, T.J., Kühn, E.R., Darras, V.M. Gen. Comp. Endocrinol. (2001) [Pubmed]
  6. Influence of temperature and gonadal steroids on the ontogenetic expression of brain serotonin 1A and 1D receptors during the critical period of sexual differentiation in tilapia, Oreochromis mossambicus. Wang, L.H., Tsai, C.L. Comp. Biochem. Physiol. B, Biochem. Mol. Biol. (2006) [Pubmed]
  7. Three GnRH receptor types in laser-captured single cells of the cichlid pituitary display cellular and functional heterogeneity. Parhar, I.S., Ogawa, S., Sakuma, Y. Proc. Natl. Acad. Sci. U.S.A. (2005) [Pubmed]
  8. Kidney-specific chloride channel, OmClC-K, predominantly expressed in the diluting segment of freshwater-adapted tilapia kidney. Miyazaki, H., Kaneko, T., Uchida, S., Sasaki, S., Takei, Y. Proc. Natl. Acad. Sci. U.S.A. (2002) [Pubmed]
  9. Somatotropic actions of the homologous growth hormone and prolactins in the euryhaline teleost, the tilapia, Oreochromis mossambicus. Shepherd, B.S., Sakamoto, T., Nishioka, R.S., Richman, N.H., Mori, I., Madsen, S.S., Chen, T.T., Hirano, T., Bern, H.A., Grau, E.G. Proc. Natl. Acad. Sci. U.S.A. (1997) [Pubmed]
  10. Expression cloning of a cDNA encoding a fish prolactin receptor. Sandra, O., Sohm, F., de Luze, A., Prunet, P., Edery, M., Kelly, P.A. Proc. Natl. Acad. Sci. U.S.A. (1995) [Pubmed]
  11. Impact of methyl parathion toxicity and eserine inhibition on acetylcholinesterase activity in tissues of the teleost (Tilapia mossambica)--a correlative study. Siva Prasada Rao, K., Ramana Rao, K.V. Toxicol. Lett. (1984) [Pubmed]
  12. Sublethal toxicity of malathion on the proteases and free amino acid composition in the liver of the teleost, Tilapia mossambica (Peters). Sahib, I.K., Prasada Rao, K.S., Sambasiva Rao, K.R., Ramana Rao, K.V. Toxicol. Lett. (1984) [Pubmed]
  13. Atrazine toxicity on hydromineral balance of fish, Tilapia mossambicus. Prasad, T.A., Reddy, D.C. Ecotoxicol. Environ. Saf. (1994) [Pubmed]
  14. Effects of monocrotophos and its analogs in acetylcholinesterase activity's inhibition and its pattern of recovery on euryhaline fish, Oreochromis mossambicus. Rao, J.V. Ecotoxicol. Environ. Saf. (2004) [Pubmed]
  15. Acute toxicity and bioaccumulation of pesticide Diazinon in red tilapia (Oreochromis niloticus x Mossambicus albina). Palacio, J.A., Henao, B., Vélez, J.H., González, J., Parra, C.M. Environ. Toxicol. (2002) [Pubmed]
  16. Regulation of fish gonadotropins. Yaron, Z., Gur, G., Melamed, P., Rosenfeld, H., Elizur, A., Levavi-Sivan, B. Int. Rev. Cytol. (2003) [Pubmed]
  17. Laser-captured single digoxigenin-labeled neurons of gonadotropin-releasing hormone types reveal a novel G protein-coupled receptor (Gpr54) during maturation in cichlid fish. Parhar, I.S., Ogawa, S., Sakuma, Y. Endocrinology (2004) [Pubmed]
  18. Cloning and characterization of type III iodothyronine deiodinase from the fish Oreochromis niloticus. Sanders, J.P., Van der Geyten, S., Kaptein, E., Darras, V.M., Kühn, E.R., Leonard, J.L., Visser, T.J. Endocrinology (1999) [Pubmed]
  19. Characterization of iodothyronine outer ring and inner ring deiodinase activities in the blue tilapia, Oreochromis aureus. Mol, K.A., Van Der Geyten, S., Darras, V.M., Visser, T.J., Kühn, E.R. Endocrinology (1997) [Pubmed]
  20. Expression of the prolactin receptor (tiPRL-R) gene in tilapia Oreochromis niloticus: tissue distribution and cellular localization in osmoregulatory organs. Sandra, O., Le Rouzic, P., Cauty, C., Edery, M., Prunet, P. J. Mol. Endocrinol. (2000) [Pubmed]
  21. Expression of tilapia prepro-melanin-concentrating hormone mRNA in hypothalamic and neurohypophysial cells. Gröneveld, D., Eckhardt, E.R., Coenen, A.J., Martens, G.J., Balm, P.H., Wendelaar Bonga, S.E. J. Mol. Endocrinol. (1995) [Pubmed]
  22. Thermostability of sperm nuclei assessed by microinjection into hamster oocytes. Yanagida, K., Yanagimachi, R., Perreault, S.D., Kleinfeld, R.G. Biol. Reprod. (1991) [Pubmed]
  23. Aquaporin-3 expressed in the basolateral membrane of gill chloride cells in Mozambique tilapia Oreochromis mossambicus adapted to freshwater and seawater. Watanabe, S., Kaneko, T., Aida, K. J. Exp. Biol. (2005) [Pubmed]
  24. Mitochondria-rich cell activity in the yolk-sac membrane of tilapia (Oreochromis mossambicus) larvae acclimatized to different ambient chloride levels. Lin, L.Y., Hwang, P.P. J. Exp. Biol. (2004) [Pubmed]
  25. Cortisol rapidly reduces prolactin release and cAMP and 45Ca2+ accumulation in the cichlid fish pituitary in vitro. Borski, R.J., Helms, L.M., Richman, N.H., Grau, E.G. Proc. Natl. Acad. Sci. U.S.A. (1991) [Pubmed]
  26. Muscle as the primary site of urea cycle enzyme activity in an alkaline lake-adapted tilapia, Oreochromis alcalicus grahami. Lindley, T.E., Scheiderer, C.L., Walsh, P.J., Wood, C.M., Bergman, H.L., Bergman, A.L., Laurent, P., Wilson, P., Anderson, P.M. J. Biol. Chem. (1999) [Pubmed]
  27. Possible interactions between gonadotrophs and somatotrophs in the pituitary of tilapia: apparent roles for insulin-like growth factor I and estradiol. Melamed, P., Gur, G., Rosenfeld, H., Elizur, A., Yaron, Z. Endocrinology (1999) [Pubmed]
  28. Dopamine causes ultrastructural changes in prolactin cells of tilapia (Oreochromis niloticus). Hazineh, A., Shin, S.H., Reifel, C., Pang, S.C., Van der Kraak, G.J. Cell. Mol. Life Sci. (1997) [Pubmed]
  29. Liposomal encapsulation significantly enchances the immunosuppressive effect of tacrolimus in a discordant islet xenotransplant model. Yang, H., McAlister, V.C., Al-Jazaeri, A., Wright, J.R. Transplantation (2002) [Pubmed]
  30. Immune localization of prolactin receptor in the mitochondria-rich cells of the euryhaline teleost (Oreochromis mossambicus) gill. Weng, C.F., Lee, T.H., Hwang, P.P. FEBS Lett. (1997) [Pubmed]
  31. Evolution of the thyrotropin receptor: a G protein coupled receptor with an intrinsic capacity to dimerize. Kaczur, V., Puskás, L.G., Takács, M., Rácz, I.A., Szendroi, A., Tóth, S., Nagy, Z., Szalai, C., Balázs, C., Falus, A., Knudsen, B., Farid, N.R. Mol. Genet. Metab. (2003) [Pubmed]
  32. Expression of nitric oxide synthase in the preoptic-hypothalamo-hypophyseal system of the teleost Oreochromis niloticus. Bordieri, L., Persichini, T., Venturini, G., Cioni, C. Brain Behav. Evol. (2003) [Pubmed]
  33. Differential expression of tuberoinfundibular peptide 38 and glucose-6-phosphatase in tilapia. Shoemaker, J.M., Riley, L.G., Hirano, T., Grau, E.G., Rubin, D.A. Gen. Comp. Endocrinol. (2006) [Pubmed]
  34. Identification of tilapia ghrelin and its effects on growth hormone and prolactin release in the tilapia, Oreochromis mossambicus. Kaiya, H., Kojima, M., Hosoda, H., Riley, L.G., Hirano, T., Grau, E.G., Kangawa, K. Comp. Biochem. Physiol. B, Biochem. Mol. Biol. (2003) [Pubmed]
  35. Isolation and characterization of myostatin complementary deoxyribonucleic acid clones from two commercially important fish: Oreochromis mossambicus and Morone chrysops. Rodgers, B.D., Weber, G.M., Sullivan, C.V., Levine, M.A. Endocrinology (2001) [Pubmed]
  36. Na(+)/K(+)-ATPase immunoreactivity in branchial chloride cells of Oreochromis mossambicus exposed to copper. Dang, Z., Lock, R.A., Flik, G., Wendelaar Bonga, S.E. J. Exp. Biol. (2000) [Pubmed]
  37. The hexapeptide KP-102 (D-ala-D-beta-Nal-ala-trp-D-phe-lys-NH(2)) stimulates growth hormone release in a cichlid fish (Ooreochromis mossambicus). Shepherd, B.S., Eckert, S.M., Parhar, I.S., Vijayan, M.M., Wakabayashi, I., Hirano, T., Grau, E.G., Chen, T.T. J. Endocrinol. (2000) [Pubmed]
  38. Evidence that gonadotropin-releasing hormone (GnRH) functions as a prolactin-releasing factor in a teleost fish (Oreochromis mossambicus) and primary structures for three native GnRH molecules. Weber, G.M., Powell, J.F., Park, M., Fischer, W.H., Craig, A.G., Rivier, J.E., Nanakorn, U., Parhar, I.S., Ngamvongchon, S., Grau, E.G., Sherwood, N.M. J. Endocrinol. (1997) [Pubmed]
 
WikiGenes - Universities