The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
MeSH Review


Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Pleura


High impact information on Pleura

  • During development, the imaginal wing disc of Drosophila is subdivided along the proximal-distal axis into different territories that will give rise to body wall (notum and mesothoracic pleura) and appendage (wing hinge and wing blade) [6].
  • In embryonic lung, Fgf9 is detected in airway epithelium and visceral pleura at E10.5, but is restricted to the pleura by E12 [7].
  • Expression of Fras1 was detected in the mesothelial cells of the visceral pleura and in the conducting airway epithelia [8].
  • PC14 and PC14PE6 lung lesions invaded the pleura and produced PE containing a high level of vascular endothelial growth factor (VEGF)-localized vascular hyperpermeability [2].
  • Collectively, the data demonstrate that the production of malignant PE requires tumor cells to invade the pleura and express high levels of VEGF/VPF [2].

Chemical compound and disease context of Pleura


Biological context of Pleura


Anatomical context of Pleura

  • Elastin and, to a lesser extent, alpha1(I) collagen mRNA were heavily expressed in pleura, blood vessels, and airways [19].
  • 1. We have examined the effect of bradykinin on impulse traffic in sympathetic afferent fibres from the heart, great vessels and pleura, and have attempted to identify cardiac nociceptors that on the basis of their functional characteristics might have a role in the initiation of cardiac pain [20].
  • The use of the CA 125 serum assay as a single diagnostic tool is restricted by the fact that the antigen to CA 125 is also produced by normal epithelia (peritoneum, pleura, and pericardium) [21].
  • Expression of CD34 by solitary fibrous tumors of the pleura, mediastinum, and lung [22].
  • A review of the literature revealed that fibrous hematopoietic tumors associated with AMM arise predominantly in the retroperitoneum, pelvis, mesentery, and pleura [23].

Associations of Pleura with chemical compounds

  • Pleural mesothelial cells (PMC) from the parietal pleura of rats were incubated in culture with UICC A chrysotile fibers [24].
  • A heparan sulfate proteoglycan was the major proteoglycan identified in the gas exchange tissue and in the pleura [25].
  • Proteoglycans were extracted from bovine lung gas exchange tissue, pleura, and bronchioles with 4.0 M guanidinium chloride at 5 degrees C in the presence of protease inhibitors [25].
  • The mechanisms responsible for these phenomena probably are (1) a selective block to glucose transport from blood to pleural fluid, (2) enhanced glucose use by rheumatoid pleura, and (3) an efflux block to the end products of pleural space glucose metabolism [26].
  • Effects of erythromycin on the rabbit pleura: its potential role as a pleural sclerosant [27].

Gene context of Pleura

  • METHODS: Normal and inflamed pleura were examined immunohistochemically for the presence of FLT-1 (the fms-like tyrosine kinase receptor of VEGF) [28].
  • RESULTS: Immunohistochemical staining of normal and diseased pleura demonstrated the presence of the FLT-1 VEGF receptor on human mesothelial cells [28].
  • Cancer cells in malignant PE expressed CXCR4, and mesothelial cells of the pleura stained positive for SDF-1alpha [29].
  • Immunohistochemical analyses of normal, fibrotic, and neoplastic pleura were performed to determine whether TFPI antigen was expressed in vivo [30].
  • RESULTS: TSP-1 was highly expressed in 74 of the 78 MPM tumors (95%) with a mean value of 2.27 +/- 0.42 compared with normal pleura (0.50 +/- 0.06) and surrounding normal lung (0.96 +/- 0.20) (P = 0.05 vs. normal pleura and P = 0.0006 vs. surrounding normal lung) [31].

Analytical, diagnostic and therapeutic context of Pleura


  1. The diagnostic distinction between malignant mesothelioma of the pleura and adenocarcinoma of the lung as defined by a monoclonal antibody (B72.3). Szpak, C.A., Johnston, W.W., Roggli, V., Kolbeck, J., Lottich, S.C., Vollmer, R., Thor, A., Schlom, J. Am. J. Pathol. (1986) [Pubmed]
  2. Production of experimental malignant pleural effusions is dependent on invasion of the pleura and expression of vascular endothelial growth factor/vascular permeability factor by human lung cancer cells. Yano, S., Shinohara, H., Herbst, R.S., Kuniyasu, H., Bucana, C.D., Ellis, L.M., Fidler, I.J. Am. J. Pathol. (2000) [Pubmed]
  3. Immunoreactivity for P-170 glycoprotein in malignant mesothelioma and in non-neoplastic mesothelium of the pleura using the murine monoclonal antibody JSB-1. Ramael, M., van den Bossche, J., Buysse, C., van Meerbeeck, J., Segers, K., Vermeire, P., van Marck, E. J. Pathol. (1992) [Pubmed]
  4. Regulation of the insulin-like growth factors and their binding proteins by glucocorticoid and growth hormone in nonislet cell tumor hypoglycemia. Baxter, R.C., Holman, S.R., Corbould, A., Stranks, S., Ho, P.J., Braund, W. J. Clin. Endocrinol. Metab. (1995) [Pubmed]
  5. Megestrol acetate in advanced breast carcinoma after failure to tamoxifen and/or aminoglutethimide. Brufman, G., Isacson, R., Haim, N., Gez, E., Sulkes, A. Oncology (1994) [Pubmed]
  6. Dpp signalling is a key effector of the wing-body wall subdivision of the Drosophila mesothorax. Cavodeassi, F., Rodríguez, I., Modolell, J. Development (2002) [Pubmed]
  7. Lung hypoplasia and neonatal death in Fgf9-null mice identify this gene as an essential regulator of lung mesenchyme. Colvin, J.S., White, A.C., Pratt, S.J., Ornitz, D.M. Development (2001) [Pubmed]
  8. Basement membrane distortions impair lung lobation and capillary organization in the mouse model for fraser syndrome. Petrou, P., Pavlakis, E., Dalezios, Y., Galanopoulos, V.K., Chalepakis, G. J. Biol. Chem. (2005) [Pubmed]
  9. High-dose methotrexate in the treatment of malignant mesothelioma of the pleura. A phase II study. Solheim, O.P., Saeter, G., Finnanger, A.M., Stenwig, A.E. Br. J. Cancer (1992) [Pubmed]
  10. Diffuse malignant mesothelioma of pleura: diagnostic criteria based on an autopsy study. Adams, V.I., Unni, K.K. Am. J. Clin. Pathol. (1984) [Pubmed]
  11. Nitrobule tetrazolium test in the diagnosis of pleural effusions. Light, R.W., George, R.B. Chest (1981) [Pubmed]
  12. Anti-cytokeratin 5/6: a positive marker for epithelioid mesothelioma. Clover, J., Oates, J., Edwards, C. Histopathology (1997) [Pubmed]
  13. Persistent chylothorax. Treatment by talc pleurodesis. Adler, R.H., Levinsky, L. J. Thorac. Cardiovasc. Surg. (1978) [Pubmed]
  14. Beta-agonist activation of an amiloride-insensitive transport mechanism in rabbit pleura. Zocchi, L., Agostoni, E., Cremaschi, D. Respiration physiology. (1995) [Pubmed]
  15. Skeletal complications in pediatric oncology patients. Roebuck, D.J. Radiographics : a review publication of the Radiological Society of North America, Inc. (1999) [Pubmed]
  16. A case of intrathoracic extramedullary hematopoiesis with massive pleural effusion: successful pleurodesis with intrapleural minocycline. Peng, M.J., Kuo, H.T., Chang, M.C. J. Formos. Med. Assoc. (1994) [Pubmed]
  17. How pleural mesothelial cells react in vitro with chrysotile fibres. Kaplan, H., Jaurand, M.C., Pinchon, M.C., Bernaudin, J.F., Bignon, J., Adnet, J.J. IARC Sci. Publ. (1980) [Pubmed]
  18. Tuberculous effusion: ADA activity correlates with CD4+ cell numbers in the fluid and the pleura. Gaga, M., Papamichalis, G., Bakakos, P., Latsi, P., Samara, I., Koulouris, N.G., Alchanatis, N., Orphanidou, D. Respiration; international review of thoracic diseases. (2005) [Pubmed]
  19. Remodeling of alveolar walls after elastase treatment of hamsters. Results of elastin and collagen mRNA in situ hybridization. Lucey, E.C., Goldstein, R.H., Stone, P.J., Snider, G.L. Am. J. Respir. Crit. Care Med. (1998) [Pubmed]
  20. Search for a cardiac nociceptor: stimulation by bradykinin of sympathetic afferent nerve endings in the heart of the cat. Baker, D.G., Coleridge, H.M., Coleridge, J.C., Nerdrum, T. J. Physiol. (Lond.) (1980) [Pubmed]
  21. How to interpret serum CA 125 levels in patients with serosal involvement? A clinical dilemma. Sevinc, A., Camci, C., Turk, H.M., Buyukberber, S. Oncology (2003) [Pubmed]
  22. Expression of CD34 by solitary fibrous tumors of the pleura, mediastinum, and lung. van de Rijn, M., Lombard, C.M., Rouse, R.V. Am. J. Surg. Pathol. (1994) [Pubmed]
  23. Fibrous hematopoietic tumors arising in agnogenic myeloid metaplasia. Beckman, E.N., Oehrle, J.S. Hum. Pathol. (1982) [Pubmed]
  24. Phagocytosis of chrysotile fibers by pleural mesothelial cells in culture. Jaurand, M.C., Kaplan, H., Thiollet, J., Pinchon, M.C., Bernaudin, J.F., Bignon, J. Am. J. Pathol. (1979) [Pubmed]
  25. Isolation and characterization of proteoglycans from bovine lung. Radhakrishnamurthy, B., Smart, F., Dalferes, E.R., Berenson, G.S. J. Biol. Chem. (1980) [Pubmed]
  26. Rheumatoid pleurisy. observations on the development of low pleural fluid pH and glucose level. Sahn, S.A., Kaplan, R.L., Maulitz, R.M., Good, J.T. Arch. Intern. Med. (1980) [Pubmed]
  27. Effects of erythromycin on the rabbit pleura: its potential role as a pleural sclerosant. Carvalho, P., Knight, L.L., Olson, R.D., Crowley, J.J., Hawk, P.A., Charan, N.B. Am. J. Respir. Crit. Care Med. (1995) [Pubmed]
  28. Vascular endothelial growth factor (VEGF) in inflammatory and malignant pleural effusions. Thickett, D.R., Armstrong, L., Millar, A.B. Thorax (1999) [Pubmed]
  29. Stromal-derived factor-1alpha/CXCL12-CXCR 4 axis is involved in the dissemination of NSCLC cells into pleural space. Oonakahara, K., Matsuyama, W., Higashimoto, I., Kawabata, M., Arimura, K., Osame, M. Am. J. Respir. Cell Mol. Biol. (2004) [Pubmed]
  30. Tissue factor pathway inhibitor expression by human pleural mesothelial and mesothelioma cells. Bajaj, M.S., Pendurthi, U., Koenig, K., Pueblitz, S., Idell, S. Eur. Respir. J. (2000) [Pubmed]
  31. Thrombospondin-1 expression and clinical implications in malignant pleural mesothelioma. Ohta, Y., Shridhar, V., Kalemkerian, G.P., Bright, R.K., Watanabe, Y., Pass, H.I. Cancer (1999) [Pubmed]
  32. Role of aquaporin water channels in pleural fluid dynamics. Song, Y., Yang, B., Matthay, M.A., Ma, T., Verkman, A.S. Am. J. Physiol., Cell Physiol. (2000) [Pubmed]
  33. Persistent pleural effusions in primary systemic amyloidosis: etiology and prognosis. Berk, J.L., Keane, J., Seldin, D.C., Sanchorawala, V., Koyama, J., Dember, L.M., Falk, R.H. Chest (2003) [Pubmed]
  34. Bronchoscopic dye injection for localization of small pulmonary nodules in thoracoscopic surgery. Sakamoto, T., Takada, Y., Endoh, M., Matsuoka, H., Tsubota, N. Ann. Thorac. Surg. (2001) [Pubmed]
  35. Interleukin-8 production in tuberculous pleurisy: role of mesothelial cells stimulated by cytokine network involving tumour necrosis factor-alpha and interleukin-1 beta. Park, J.S., Kim, Y.S., Jee, Y.K., Myong, N.H., Lee, K.Y. Scand. J. Immunol. (2003) [Pubmed]
  36. Overdose of tetracycline for pleurodesis leading to chemical burns of the pleura. Chaugle, H., Parchment, C., Keenan, D.J., Grötte, G.J. European journal of cardio-thoracic surgery : official journal of the European Association for Cardio-thoracic Surgery. (1999) [Pubmed]
WikiGenes - Universities