The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)



Gene Review

Bgn  -  biglycan

Mus musculus

Synonyms: BG, Biglycan, Bone/cartilage proteoglycan I, DSPG1, PG-S1, ...
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Bgn


Psychiatry related information on Bgn


High impact information on Bgn

  • In vitro studies indicate that Bgn may function in connective tissue metabolism by binding to collagen fibrils and TGF-beta (refs 5,6), and may promote neuronal survival [7].
  • Although apparently normal at birth, these mice display a phenotype characterized by a reduced growth rate and decreased bone mass due to the absence of Bgn [7].
  • Biglycan (encoded by the gene Bgn) is an ECM proteoglycan that is enriched in bone and other non-skeletal connective tissues [7].
  • Similar repeats have been found in two other proteoglycans, biglycan and fibromodulin, and in several other proteins including Drosophila morphogenetic proteins [8].
  • Thus, biglycan, upon release from the ECM or from macrophages, can boost inflammation by signaling through TLR4 and TLR2, thereby enhancing the synthesis of TNF-alpha and MIP-2 [4].

Chemical compound and disease context of Bgn


Biological context of Bgn

  • The mouse Bgn gene spanned over 9.5 kb of continuous DNA and comprised 8 exons, with a perfectly conserved intron/exon organization vis-á-vis the human counterpart [11].
  • A transient and dramatic up-regulation of biglycan was associated with newly formed myotubes, whereas decorin presented only minor variations [12].
  • We have cloned and sequenced the cDNA containing the complete murine biglycan, elucidated its genomic organization, and demonstrated functional promoter activity of its 5' flanking region [11].
  • The data suggest that differences in tissue distribution are responsible for the different effects on TGF-beta bioactivity in vivo, indicating that decorin, but not biglycan, has potential therapeutic value in fibrotic disorders of the lung [13].
  • Biglycan is a Class I Small Leucine Rich Proteoglycans (SLRP) that is localized on human chromosome Xq28-ter [14].

Anatomical context of Bgn

  • Phenotypic effects of biglycan deficiency are linked to collagen fibril abnormalities, are synergized by decorin deficiency, and mimic Ehlers-Danlos-like changes in bone and other connective tissues [15].
  • Studies both in vitro and in intact developing newborn mice showed that biglycan expression is initially high and then decreases during skeletal muscle differentiation and maturation [12].
  • Biglycan mRNA was ubiquitously distributed throughout the palatal mesenchyme for the mid-gestation period [16].
  • OBJECTIVE: To investigate whether the absence of biglycan and fibromodulin, two proteoglycans expressed in cartilage, bone and tendon, resulted in accelerated osteoarthritis in the temporomandibular joint (TMJ) [1].
  • METHODS: Histological sections of TMJ from 3-, 6-, 9- and 18-month-old wild-type (WT) and biglycan/fibromodulin double-deficient (DKO) mice were compared [1].

Associations of Bgn with chemical compounds


Physical interactions of Bgn


Regulatory relationships of Bgn


Other interactions of Bgn


Analytical, diagnostic and therapeutic context of Bgn


  1. Accelerated osteoarthritis in the temporomandibular joint of biglycan/fibromodulin double-deficient mice. Wadhwa, S., Embree, M.C., Kilts, T., Young, M.F., Ameye, L.G. Osteoarthr. Cartil. (2005) [Pubmed]
  2. Age-related osteoporosis in biglycan-deficient mice is related to defects in bone marrow stromal cells. Chen, X.D., Shi, S., Xu, T., Robey, P.G., Young, M.F. J. Bone Miner. Res. (2002) [Pubmed]
  3. Dissection of the sets of genes that control the behavior of biglycan-deficient pre-osteoblasts using oligonucleotide microarrays. Chen, X.D., Bian, X., Teslovich, T.M., Stephan, D.A., Young, M.F. Bone (2005) [Pubmed]
  4. The matrix component biglycan is proinflammatory and signals through Toll-like receptors 4 and 2 in macrophages. Schaefer, L., Babelova, A., Kiss, E., Hausser, H.J., Baliova, M., Krzyzankova, M., Marsche, G., Young, M.F., Mihalik, D., Götte, M., Malle, E., Schaefer, R.M., Gröne, H.J. J. Clin. Invest. (2005) [Pubmed]
  5. Biglycan is overexpressed in pancreatic cancer and induces G1-arrest in pancreatic cancer cell lines. Weber, C.K., Sommer, G., Michl, P., Fensterer, H., Weimer, M., Gansauge, F., Leder, G., Adler, G., Gress, T.M. Gastroenterology (2001) [Pubmed]
  6. APP mRNA splicing is upregulated in the brain of biglycan transgenic mice. Bjelik, A., P??k??ski, M., Bereczki, E., Gonda, S., Juh??sz, A., Riman??czy, A., Zana, M., Janka, Z., S??ntha, M., K??lm??n, J. Neurochem. Int. (2007) [Pubmed]
  7. Targeted disruption of the biglycan gene leads to an osteoporosis-like phenotype in mice. Xu, T., Bianco, P., Fisher, L.W., Longenecker, G., Smith, E., Goldstein, S., Bonadio, J., Boskey, A., Heegaard, A.M., Sommer, B., Satomura, K., Dominguez, P., Zhao, C., Kulkarni, A.B., Robey, P.G., Young, M.F. Nat. Genet. (1998) [Pubmed]
  8. Negative regulation of transforming growth factor-beta by the proteoglycan decorin. Yamaguchi, Y., Mann, D.M., Ruoslahti, E. Nature (1990) [Pubmed]
  9. Regulation of fibrillin-1 by biglycan and decorin is important for tissue preservation in the kidney during pressure-induced injury. Schaefer, L., Mihalik, D., Babelova, A., Krzyzankova, M., Gröne, H.J., Iozzo, R.V., Young, M.F., Seidler, D.G., Lin, G., Reinhardt, D.P., Schaefer, R.M. Am. J. Pathol. (2004) [Pubmed]
  10. Prostacyclin (PGI) receptor binding and cyclic AMP synthesis activities of PGI1 analogues, SM-10906 and its methyl ester, SM-10902, in mastocytoma P-815 cells. Oka, M., Negishi, M., Yamamoto, T., Satoh, K., Hirohashi, T., Ichikawa, A. Biol. Pharm. Bull. (1994) [Pubmed]
  11. The murine biglycan: complete cDNA cloning, genomic organization, promoter function, and expression. Wegrowski, Y., Pillarisetti, J., Danielson, K.G., Suzuki, S., Iozzo, R.V. Genomics (1995) [Pubmed]
  12. Transient up-regulation of biglycan during skeletal muscle regeneration: delayed fiber growth along with decorin increase in biglycan-deficient mice. Casar, J.C., McKechnie, B.A., Fallon, J.R., Young, M.F., Brandan, E. Dev. Biol. (2004) [Pubmed]
  13. Proteoglycans decorin and biglycan differentially modulate TGF-beta-mediated fibrotic responses in the lung. Kolb, M., Margetts, P.J., Sime, P.J., Gauldie, J. Am. J. Physiol. Lung Cell Mol. Physiol. (2001) [Pubmed]
  14. Biglycan knockout mice: new models for musculoskeletal diseases. Young, M.F., Bi, Y., Ameye, L., Chen, X.D. Glycoconj. J. (2002) [Pubmed]
  15. Phenotypic effects of biglycan deficiency are linked to collagen fibril abnormalities, are synergized by decorin deficiency, and mimic Ehlers-Danlos-like changes in bone and other connective tissues. Corsi, A., Xu, T., Chen, X.D., Boyde, A., Liang, J., Mankani, M., Sommer, B., Iozzo, R.V., Eichstetter, I., Robey, P.G., Bianco, P., Young, M.F. J. Bone Miner. Res. (2002) [Pubmed]
  16. Differential expression of decorin and biglycan genes during palatogenesis in normal and retinoic acid-treated mice. Zhang, Y., Mori, T., Iseki, K., Hagino, S., Takaki, H., Takeuchi, M., Hikake, T., Tase, C., Murakawa, M., Yokoya, S., Wanaka, A. Dev. Dyn. (2003) [Pubmed]
  17. Bone morphogenetic protein-1 processes probiglycan. Scott, I.C., Imamura, Y., Pappano, W.N., Troedel, J.M., Recklies, A.D., Roughley, P.J., Greenspan, D.S. J. Biol. Chem. (2000) [Pubmed]
  18. Immortalized, cloned mouse chondrocytic cells (MC615) produce three different matrix proteoglycans with core-protein-specific chondroitin/dermatan sulphate structures. Kokenyesi, R., Silbert, J.E. Biochem. J. (1997) [Pubmed]
  19. Excess biglycan causes eyelid malformation by perturbing muscle development and TGF-alpha signaling. Hayashi, Y., Liu, C.Y., Jester, J.J., Hayashi, M., Wang, I.J., Funderburgh, J.L., Saika, S., Roughley, P.J., Kao, C.W., Kao, W.W. Dev. Biol. (2005) [Pubmed]
  20. Biglycan-deficient mice have delayed osteogenesis after marrow ablation. Chen, X.D., Allen, M.R., Bloomfield, S., Xu, T., Young, M. Calcif. Tissue Int. (2003) [Pubmed]
  21. Differentially expressed genes in the lens of mimecan-null mice. Tasheva, E.S., Ke, A., Deng, Y., Jun, C., Takemoto, L.J., Koester, A., Conrad, G.W. Mol. Vis. (2004) [Pubmed]
  22. Biglycan, a danger signal that activates the NLRP3 inflammasome via toll-like and P2X receptors. Babelova, A., Moreth, K., Tsalastra-Greul, W., Zeng-Brouwers, J., Eickelberg, O., Young, M.F., Bruckner, P., Pfeilschifter, J., Schaefer, R.M., Gröne, H.J., Schaefer, L. J. Biol. Chem. (2009) [Pubmed]
  23. Proteoglycan expression in the normal rat kidney. Pyke, C., Kristensen, P., Ostergaard, P.B., Oturai, P.S., Rømer, J. Nephron (1997) [Pubmed]
  24. Differential effects of local application of BMP-2 or TGF-beta 1 on both articular cartilage composition and osteophyte formation. van Beuningen, H.M., Glansbeek, H.L., van der Kraan, P.M., van den Berg, W.B. Osteoarthr. Cartil. (1998) [Pubmed]
  25. Abnormal collagen fibrils in tendons of biglycan/fibromodulin-deficient mice lead to gait impairment, ectopic ossification, and osteoarthritis. Ameye, L., Aria, D., Jepsen, K., Oldberg, A., Xu, T., Young, M.F. FASEB J. (2002) [Pubmed]
  26. Transcriptional profiling and regulation of the extracellular matrix during muscle regeneration. Goetsch, S.C., Hawke, T.J., Gallardo, T.D., Richardson, J.A., Garry, D.J. Physiol. Genomics (2003) [Pubmed]
WikiGenes - Universities