The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)



Gene Review

Fcer2a  -  Fc receptor, IgE, low affinity II, alpha...

Mus musculus

Synonyms: CD23, FC epsilon RII, Fc-epsilon-RII, Fce2, Fcer2, ...
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Fcer2a


High impact information on Fcer2a

  • The fragments of Fc epsilon RII on human B cells represent the carboxy terminal half of the receptor molecules and have affinity for IgE [6].
  • Studies performed using an anti-CD23 mAb, CD23 deficient and mast cell deficient mice suggest that anti-IgE mAb suppresses eosinophil infiltration and Th2 cytokine production by inhibiting IgE-CD23-facilitated antigen presentation to T cells [7].
  • RESULTS: Expression of the low-affinity IgE receptor was demonstrated in cultured epithelial cells as well as in situ cells in human intestine [8].
  • A number of functions have been ascribed to CD23, including specific regulation of IgE production, IgE-mediated cytotoxicity and release of mediators, IgE-dependent antigen focusing, promotion of B-cell growth, prevention of germinal center B cells from apoptosis, proliferation of myeloid precursors, and maturation of early thymocytes [9].
  • Alpha-helical coiled-coil stalks in the low-affinity receptor for IgE (Fc epsilon RII/CD23) and related C-type lectins [10].

Chemical compound and disease context of Fcer2a

  • While there were no significant differences in ovalbumin (OVA)-specific IgE titers and tissue eosinophilia, evaluation of lung function demonstrated that CD23-/- mice showed an increased AHR to methacholine (MCh) when compared to wild-type mice but were completely resistant to the OVA challenge [11].

Biological context of Fcer2a


Anatomical context of Fcer2a


Associations of Fcer2a with chemical compounds

  • Cholera toxin and dibutyryl cAMP mimicked the ability of PGE2 to inhibit B cell enlargement, and class II MHC and Fc epsilon RII induction, suggesting that PGE2 signaling occurs via cAMP [17].
  • The enhanced expression of low-affinity IgE receptor (Fc epsilon RII/CD23) on the spleen cells of immunized mice was also inhibited by IPD-1151T administration [18].
  • Critical role of CD23 in allergen-induced bronchoconstriction in a murine model of allergic asthma [11].
  • The low affinity receptor for IgE (CD23) was recently implicated in the trans-epithelial transport of IgE-allergen complexes from the luminal side of enterocytes in animal models for intestinal allergy [19].
  • Two metalloprotease inhibitors, compound A (N-[4-hydoxyamino-2-(R)-isobutyl-3-(S)propargylthiomethylsuccinyl]-(S)-phenylalnine-N'-methyl-amide) and compound B (N-[3-(S)-hydroxy-4-hydroxyamino-2-(R)-(2-naphthylmethyl) succinyl]-(S)-tert-leucinamide), were chosen for their ability to inhibit human CD23 cleavage and selectively inhibit IgE production [20].

Regulatory relationships of Fcer2a


Other interactions of Fcer2a


Analytical, diagnostic and therapeutic context of Fcer2a


  1. Abolition of anaphylaxis by targeted disruption of the high affinity immunoglobulin E receptor alpha chain gene. Dombrowicz, D., Flamand, V., Brigman, K.K., Koller, B.H., Kinet, J.P. Cell (1993) [Pubmed]
  2. Expression of the Fc-receptor for IgE (Fc epsilon RII, CD23) on alveolar macrophages in extrinsic allergic alveolitis. Pforte, A., Breyer, G., Prinz, J.C., Gais, P., Burger, G., Häussinger, K., Rieber, E.P., Held, E., Ziegler-Heitbrock, H.W. J. Exp. Med. (1990) [Pubmed]
  3. Clinical implications of the serum level of CD23 in patients with undifferentiated nasopharyngeal carcinoma. Rousselet, G., Bachouchi, M., Busson, P., de Vathaire, F., Wakasugi, H., Schwaab, G., Azli, N., Armand, J.P., Cvitkovic, E., Tursz, T. J. Clin. Oncol. (1993) [Pubmed]
  4. Importance of CD23 for collagen-induced arthritis: delayed onset and reduced severity in CD23-deficient mice. Kleinau, S., Martinsson, P., Gustavsson, S., Heyman, B. J. Immunol. (1999) [Pubmed]
  5. Complete genomic sequence of the murine low affinity Fc receptor for IgE. Demonstration of alternative transcripts and conserved sequence elements. Richards, M.L., Katz, D.H., Liu, F.T. J. Immunol. (1991) [Pubmed]
  6. IgE-binding factors and regulation of the IgE antibody response. Ishizaka, K. Annu. Rev. Immunol. (1988) [Pubmed]
  7. Central role of immunoglobulin (Ig) E in the induction of lung eosinophil infiltration and T helper 2 cell cytokine production: inhibition by a non-anaphylactogenic anti-IgE antibody. Coyle, A.J., Wagner, K., Bertrand, C., Tsuyuki, S., Bews, J., Heusser, C. J. Exp. Med. (1996) [Pubmed]
  8. CD23-mediated IgE transport across human intestinal epithelium: inhibition by blocking sites of translation or binding. Tu, Y., Salim, S., Bourgeois, J., Di Leo, V., Irvine, E.J., Marshall, J.K., Perdue, M.H. Gastroenterology (2005) [Pubmed]
  9. The absence of IgE antibody-mediated augmentation of immune responses in CD23-deficient mice. Fujiwara, H., Kikutani, H., Suematsu, S., Naka, T., Yoshida, K., Yoshida, K., Tanaka, T., Suemura, M., Matsumoto, N., Kojima, S. Proc. Natl. Acad. Sci. U.S.A. (1994) [Pubmed]
  10. Alpha-helical coiled-coil stalks in the low-affinity receptor for IgE (Fc epsilon RII/CD23) and related C-type lectins. Beavil, A.J., Edmeades, R.L., Gould, H.J., Sutton, B.J. Proc. Natl. Acad. Sci. U.S.A. (1992) [Pubmed]
  11. Critical role of CD23 in allergen-induced bronchoconstriction in a murine model of allergic asthma. Dasic, G., Juillard, P., Graber, P., Herren, S., Angell, T., Knowles, R., Bonnefoy, J.Y., Kosco-Vilbois, M.H., Chvatchko, Y. Eur. J. Immunol. (1999) [Pubmed]
  12. Chromosomal location and isoform analysis of mouse Fc epsilon RII/CD23. Conrad, D.H., Kozak, C.A., Vernachio, J., Squire, C.M., Rao, M., Eicher, E.M. Mol. Immunol. (1993) [Pubmed]
  13. Transgene CD23 expression on lymphoid cells modulates IgE and IgG1 responses. Texido, G., Eibel, H., Le Gros, G., van der Putten, H. J. Immunol. (1994) [Pubmed]
  14. B cell activator. Effects on B cell expression of CD23, proliferation, and antibody secretion. Marcelletti, J.F., Matsushita, S., Katz, D.H. J. Immunol. (1992) [Pubmed]
  15. The Fc epsilon RII/CD23 gene is actively transcribed during all stages of murine B-lymphocyte development. Hagen, M., Sacco, R.E., Sandor, M., Best, C., Nambu, M., Lynch, R.G. Mol. Immunol. (1995) [Pubmed]
  16. IgE enhances antibody and T cell responses in vivo via CD23+ B cells. Getahun, A., Hjelm, F., Heyman, B. J. Immunol. (2005) [Pubmed]
  17. Prostaglandin E2 and cAMP inhibit B lymphocyte activation and simultaneously promote IgE and IgG1 synthesis. Roper, R.L., Phipps, R.P. J. Immunol. (1992) [Pubmed]
  18. Suppression of IgE production by IPD-1151T (suplatast tosilate), a new dimethylsulfonium agent: (1). Regulation of murine IgE response. Yanagihara, Y., Kiniwa, M., Ikizawa, K., Yamaya, H., Shida, T., Matsuura, N., Koda, A. Jpn. J. Pharmacol. (1993) [Pubmed]
  19. Differential role for CD23 splice forms in apical to basolateral transcytosis of IgE/allergen complexes. Montagnac, G., Yu, L.C., Bevilacqua, C., Heyman, M., Conrad, D.H., Perdue, M.H., Benmerah, A. Traffic (2005) [Pubmed]
  20. Metalloprotease inhibitor-mediated inhibition of mouse immunoglobulin production. Kilmon, M.A., Mayer, R.J., Marshall, L.A., Conrad, D.H. Immunology (2001) [Pubmed]
  21. Cellular requirements of IgE-antibody regulation. König, W., Pfeil, P., Hofmann, U., Bujanowski-Weber, J., Knöller, I. Pathol. Biol. (1987) [Pubmed]
  22. Loss of dopaminergic neurons by the induction of inducible nitric oxide synthase and cyclooxygenase-2 via CD 40: relevance to Parkinson's disease. Okuno, T., Nakatsuji, Y., Kumanogoh, A., Moriya, M., Ichinose, H., Sumi, H., Fujimura, H., Kikutani, H., Sakoda, S. J. Neurosci. Res. (2005) [Pubmed]
  23. Co-crosslinking Fc epsilon RII/CD23 and B cell surface immunoglobulin modulates B cell activation. Campbell, K.A., Lees, A., Finkelman, F.D., Conrad, D.H. Eur. J. Immunol. (1992) [Pubmed]
  24. Effects of recombinant tumour necrosis factor on antibody-dependent eosinophil-mediated damage to Schistosoma japonicum larvae. Janecharut, T., Hata, H., Takahashi, H., Yoshida, S., Saito, H., Kojima, S. Parasite Immunol. (1992) [Pubmed]
  25. Strain-dependent migration of lymphocytes to the vaginal mucosa after peripheral immunization. Mulero-Marchese, R.D., Blank, K.J., Sieck, T.G. Immunogenetics (1999) [Pubmed]
  26. IFN-alpha-mediated suppression of low-affinity FC(epsilon) receptors on Peyer's patch lymphocytes and augmentation of soluble CD23: implications for IgE responses. Miller, H., Bluth, M.H., Chice, S.M., Durkin, H.G., Auci, D.L. J. Leukoc. Biol. (1996) [Pubmed]
  27. Effect of immunological stimulation on the production of platelet-activating factor by rat peritoneal cells: its relevance to anaphylactic reactions. Pellon, M.I., Fernandez-Gallardo, S., Gijon, M.A., Garcia, M.C., Liu, F.T., Sanchez Crespo, M. Immunopharmacology (1993) [Pubmed]
  28. Pharmacological modulation of the antigen-induced expression of the low-affinity IgE receptor (Fc epsilon RII/CD23) on rat alveolar macrophages. Mencia-Huerta, J.M., Dugas, B., Boichot, E., Petit-Frère, C., Paul-Eugène, N., Lagente, V., Capron, M., Liu, F.T., Braquet, P. Int. Arch. Allergy Appl. Immunol. (1991) [Pubmed]
WikiGenes - Universities