The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Gene Review

FLO11  -  Flo11p

Saccharomyces cerevisiae S288c

Synonyms: Flocculation protein FLO11, Flocculin-11, MAL5, MUC1, Mucin-like protein 1, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of MUC1

 

High impact information on MUC1

  • The epigenetic state of FLO11 is heritable for many generations and regulated by the histone deacetylase (HDAC) Hda1p [3].
  • Epigenetic silencing of FLO11 regulates a key developmental switch: when FLO11 is expressed, diploid cells form pseudohyphal filaments; when FLO11 is silent, the cells grow in yeast form [3].
  • Moreover, ploidy regulation of the FLO11 gene had direct consequences for yeast development [4].
  • Saccharomyces cells secrete aromatic alcohols that stimulate morphogenesis by inducing the expression of FLO11 through a Tpk2p-dependent mechanism [5].
  • Thus, like the promoters of the key developmental genes, HO and IME1, the FLO11 promoter is large and complex, endowing it with the ability to integrate multiple inputs [6].
 

Biological context of MUC1

 

Anatomical context of MUC1

  • The oxidation of NADH in submitochondrial particles isolated from MUC1, MUC2 and MUC3 mucidin-resistant mutants of Saccharomyces cerevisiae is specifically resistant to mucidin [9].
  • Immunization with tumour antigen MUC1 conjugated to oxidized mannan (OM) or reduced mannan (RM) induced differential immune responses in mice, and only mice immunized with OM-MUC1 elicited strong MUC1-specific cytotoxic T lymphocyte responses and protected mice from a MUC1 tumour challenge [10].
  • The sta2 gene, conferring the ability to metabolize starch was transferred from an auxotrophic haploid strain of S. cerevisiae (S. diastaticus) and the melibiose-metabolism (mel) gene(s), from S. kluyveri, to the kar1-1 mutant [K5-5A; (alpha ade2 his4 can1 gal) by normal mating and protoplast fusion [11].
 

Associations of MUC1 with chemical compounds

 

Physical interactions of MUC1

  • The absence of the Isw2p-Itc1p chromatin-remodelling complex induces mating type-specific and Flo11p-independent invasive growth of Saccharomyces cerevisiae [15].
  • Flo8 and Mss11 bind cooperatively to the inverted repeat sequence TTTGC-n-GCAAA (n = 97) in UAS1-2 of the STA1 promoter [16].
  • The NRG1 gene encodes a 25-kDa C2H2 zinc finger protein which specifically binds to two regions in the upstream activation sequence of the STA1 gene, as judged by gel retardation and DNase I footprinting analyses [17].
 

Regulatory relationships of MUC1

  • Recruitment of the Swi/Snf complex by Ste12-Tec1 promotes Flo8-Mss11-mediated activation of STA1 expression [16].
  • In the final step, Flo8 and Mss11 directly promote association of RNA polymerase II with the STA1 promoter to activate STA1 expression [16].
  • In haploid cells, Cdc42p is able to regulate invasive growth dependent on and independent of FLO11 gene expression [18].
  • GPR1 regulates filamentous growth through FLO11 in yeast Saccharomyces cerevisiae [19].
  • In addition, Gcn4p controls expression of FLO11 by affecting two basal upstream activation sequences (UASB) [13].
 

Other interactions of MUC1

  • We show that MUC1 mediates the effect of Msn1p and Mss11p on invasive growth [20].
  • FLO11 transcription, which correlates with the level of invasive growth, is low in cln1 cln2 mutants and high in grr1 cells (defective in proteolysis of Cln1,2), suggesting that Cln1,2/Cdks regulate the pseudohyphal transcriptional program [21].
  • KEM1 affected the level of FLO11 transcripts and the expression of the filamentation-associated reporter genes, Ty1-lacZ and FLO11-lacZ [22].
  • Mutational analysis of TEC1 revealed that TCS control, FLO11 expression, and haploid invasive growth require the C terminus of Tec1p [23].
  • Genetic evidence indicates that Tpk2 acts upstream of Sfl1 in the regulation of Flo11 [24].
 

Analytical, diagnostic and therapeutic context of MUC1

References

  1. Primary structure and regulation of a glucoamylase-encoding gene (STA2) in Saccharomyces diastaticus. Lambrechts, M.G., Pretorius, I.S., Sollitti, P., Marmur, J. Gene (1991) [Pubmed]
  2. Secretion of Bacillus alpha-amylase from yeast directed by glucoamylase I signal sequence of Saccharomyces diastaticus. Kang, D.O., Hwang, I.K., Kim, B.Y., Ahn, S.C., Mheen, T.I., Ahn, J.S., Byun, S.M. Biochem. Mol. Biol. Int. (1996) [Pubmed]
  3. Genetic and epigenetic regulation of the FLO gene family generates cell-surface variation in yeast. Halme, A., Bumgarner, S., Styles, C., Fink, G.R. Cell (2004) [Pubmed]
  4. Ploidy regulation of gene expression. Galitski, T., Saldanha, A.J., Styles, C.A., Lander, E.S., Fink, G.R. Science (1999) [Pubmed]
  5. Feedback control of morphogenesis in fungi by aromatic alcohols. Chen, H., Fink, G.R. Genes Dev. (2006) [Pubmed]
  6. MAP kinase and cAMP filamentation signaling pathways converge on the unusually large promoter of the yeast FLO11 gene. Rupp, S., Summers, E., Lo, H.J., Madhani, H., Fink, G. EMBO J. (1999) [Pubmed]
  7. FLO11, a yeast gene related to the STA genes, encodes a novel cell surface flocculin. Lo, W.S., Dranginis, A.M. J. Bacteriol. (1996) [Pubmed]
  8. Characteristics of Flo11-dependent flocculation in Saccharomyces cerevisiae. Bayly, J.C., Douglas, L.M., Pretorius, I.S., Bauer, F.F., Dranginis, A.M. FEMS Yeast Res. (2005) [Pubmed]
  9. Spectral properties of cytochrome b-561 and cytochrome b-565 in mucidin-resistant mutants of Saccharomyces cerevisiae. Subík, J., Briquet, M., Goffeau, A. Eur. J. Biochem. (1981) [Pubmed]
  10. Mannan derivatives induce phenotypic and functional maturation of mouse dendritic cells. Sheng, K.C., Pouniotis, D.S., Wright, M.D., Tang, C.K., Lazoura, E., Pietersz, G.A., Apostolopoulos, V. Immunology (2006) [Pubmed]
  11. Transfer of genes for utilization of starch (sta2) and melibiose (mel) to industrial strains of Saccharomyces cerevisiae by single-chromosome transfer, using a kar1 mutant as vector. Spencer, J.F., Spencer, D.M., de Figueroa, L., Nougues, J.M., Heluane, H. Appl. Microbiol. Biotechnol. (1992) [Pubmed]
  12. Snf1 protein kinase and the repressors Nrg1 and Nrg2 regulate FLO11, haploid invasive growth, and diploid pseudohyphal differentiation. Kuchin, S., Vyas, V.K., Carlson, M. Mol. Cell. Biol. (2002) [Pubmed]
  13. Amino acid starvation and Gcn4p regulate adhesive growth and FLO11 gene expression in Saccharomyces cerevisiae. Braus, G.H., Grundmann, O., Brückner, S., Mösch, H.U. Mol. Biol. Cell (2003) [Pubmed]
  14. Functional characterization of the Saccharomyces cerevisiae VHS3 gene: a regulatory subunit of the Ppz1 protein phosphatase with novel, phosphatase-unrelated functions. Ruiz, A., Muñoz, I., Serrano, R., González, A., Simón, E., Ariño, J. J. Biol. Chem. (2004) [Pubmed]
  15. The absence of the Isw2p-Itc1p chromatin-remodelling complex induces mating type-specific and Flo11p-independent invasive growth of Saccharomyces cerevisiae. Trachtulcová, P., Frýdlová, I., Janatová, I., Hasek, J. Yeast (2004) [Pubmed]
  16. Recruitment of the Swi/Snf complex by Ste12-Tec1 promotes Flo8-Mss11-mediated activation of STA1 expression. Kim, T.S., Kim, H.Y., Yoon, J.H., Kang, H.S. Mol. Cell. Biol. (2004) [Pubmed]
  17. Nrg1 is a transcriptional repressor for glucose repression of STA1 gene expression in Saccharomyces cerevisiae. Park, S.H., Koh, S.S., Chun, J.H., Hwang, H.J., Kang, H.S. Mol. Cell. Biol. (1999) [Pubmed]
  18. Different domains of the essential GTPase Cdc42p required for growth and development of Saccharomyces cerevisiae. Mösch, H.U., Köhler, T., Braus, G.H. Mol. Cell. Biol. (2001) [Pubmed]
  19. GPR1 regulates filamentous growth through FLO11 in yeast Saccharomyces cerevisiae. Tamaki, H., Miwa, T., Shinozaki, M., Saito, M., Yun, C.W., Yamamoto, K., Kumagai, H. Biochem. Biophys. Res. Commun. (2000) [Pubmed]
  20. Msn1p/Mss10p, Mss11p and Muc1p/Flo11p are part of a signal transduction pathway downstream of Mep2p regulating invasive growth and pseudohyphal differentiation in Saccharomyces cerevisiae. Gagiano, M., van Dyk, D., Bauer, F.F., Lambrechts, M.G., Pretorius, I.S. Mol. Microbiol. (1999) [Pubmed]
  21. Saccharomyces cerevisiae G1 cyclins are differentially involved in invasive and pseudohyphal growth independent of the filamentation mitogen-activated protein kinase pathway. Loeb, J.D., Kerentseva, T.A., Pan, T., Sepulveda-Becerra, M., Liu, H. Genetics (1999) [Pubmed]
  22. KEM1 is involved in filamentous growth of Saccharomyces cerevisiae. Kim, J., Kim, J. FEMS Microbiol. Lett. (2002) [Pubmed]
  23. Dual role of the Saccharomyces cerevisiae TEA/ATTS family transcription factor Tec1p in regulation of gene expression and cellular development. Köhler, T., Wesche, S., Taheri, N., Braus, G.H., Mösch, H.U. Eukaryotic Cell (2002) [Pubmed]
  24. The three yeast A kinases have specific signaling functions in pseudohyphal growth. Robertson, L.S., Fink, G.R. Proc. Natl. Acad. Sci. U.S.A. (1998) [Pubmed]
  25. Mucidin resistance in yeast. Isolation, characterization and genetic analysis of nuclear and mitochondrial mucidin-resistant mutants of Saccharomyces cerevisiae. Subík, J., Kovácová, V., Takáscová, G. Eur. J. Biochem. (1977) [Pubmed]
  26. Localization of glucoamylase genes of Saccharomyces cerevisiae by pulsed field gel electrophoresis. Bignell, G.R., Evans, I.H. Antonie Van Leeuwenhoek (1990) [Pubmed]
  27. Molecular cloning and characterization of the STA2 glucoamylase gene of Saccharomyces diastaticus. Pretorius, I.S., Chow, T., Modena, D., Marmur, J. Mol. Gen. Genet. (1986) [Pubmed]
  28. Biochemical and immunological characterization of the STA2-encoded extracellular glucoamylase from saccharomyces diastaticus. Modena, D., Vanoni, M., Englard, S., Marmur, J. Arch. Biochem. Biophys. (1986) [Pubmed]
 
WikiGenes - Universities