The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Zona Reticularis

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Zona Reticularis

  • These findings of basal and ACTH-stimulated hypersecretion of delta 5-androgens in patients with postaldolescent acne are consistent with an increased volume of androgen-secreting tissue, rather than hypersensitivity of the adrenal zona reticularis to ACTH [1].
  • However, the cause of adrenal androgen hypersecretion is not yet fully understood but it may include endogenous hypersecretion of the zona reticularis of unclear cause, hypersecretion of cortical-androgen-stimulating hormone (CASH), stress, hyperprolactinemia, adrenal enzymatic defects etc [2].
  • In the present study, the width of the zona reticularis was studied single blind in multiple sections of the adrenals of 42 victims of sudden death 4 months to 93 years of age to discern a possible correlation between zona reticularis width and the declining adrenal androgen levels and excretion typical of aging [3].
  • Similarly, low birthweight and subsequent rapid postnatal weight gain are associated with increased androgen secretion from the adrenal zona reticularis and this may contribute to disorders of hyperandrogenism and hyperinsulinemia before and after puberty [4].
  • On the contrary, prolonged prolactin treatment induced a conspicuous hypertrophy of zona reticularis cells, as well as a notable rise in the plasma concentration of testosterone, which cannot be due to gonad stimulation by prolactin since orchiectomized rats were employed [5].
 

High impact information on Zona Reticularis

 

Biological context of Zona Reticularis

 

Anatomical context of Zona Reticularis

 

Associations of Zona Reticularis with chemical compounds

 

Gene context of Zona Reticularis

  • IL-1 enhances the proliferation of adrenocortical cells, and findings suggest that cytokines may control the apoptotic deletion of senescent zona reticularis cells [24].
  • A recent study showed GATA-6 expression in the adrenal reticularis, the source of adrenal androgens [25].
  • After sodium restriction, AT1 receptors appeared to be uniformly distributed within an enlarged ZG; furthermore AT1 receptor-positive cells were found to a limited degree in the zona fasciculata and possibly in the zona reticularis, and a greater number of these positive cells appeared in these zones under sodium restriction [26].
  • Adrenarche is thought to be governed by a dual control mechanism in which an adrenal androgen secretagogue acts upon a zona reticularis primed by ACTH [27].
  • We suggest that the enigma of adrenarche may have an elegant solution, with CRH and ACTH coupled in sequence at the hypothalamic-pituitary level, and in parallel within the zona reticularis, just as they presumably are within the fetal adrenal, which is exposed to CRH of placental origin [27].
 

Analytical, diagnostic and therapeutic context of Zona Reticularis

References

  1. Adrenal androgen secretion in postadolescent acne: increased adrenocortical function without hypersensitivity to adrenocorticotropin. Laue, L., Peck, G.L., Loriaux, D.L., Gallucci, W., Chrousos, G.P. J. Clin. Endocrinol. Metab. (1991) [Pubmed]
  2. Polycystic ovarian disease: the adrenal connection. Marouliss, G.B., Triantafillidis, I.K. Pediatric endocrinology reviews : PER. (2006) [Pubmed]
  3. Aging and the human zona reticularis. Parker, L.N., Lifrak, E.T., Ramadan, M.B., Lai, M.K. Arch. Androl. (1983) [Pubmed]
  4. Adrenal function of low-birthweight children. Ong, K. Endocrine development. (2005) [Pubmed]
  5. Opposed effects of chronic prolactin administration on the zona fasciculata and zona reticularis of the rat adrenal cortex: an ultrastructural stereological study. Robba, C., Rebuffat, P., Mazzocchi, G., Nussdorfer, G.G. J. Submicrosc. Cytol. (1985) [Pubmed]
  6. Transcriptional activation of mouse retrotransposons in vivo: specific expression in steroidogenic cells in response to trophic hormones. Schiff, R., Itin, A., Keshet, E. Genes Dev. (1991) [Pubmed]
  7. Regulation of scavenger receptor, class B, type I, a high density lipoprotein receptor, in liver and steroidogenic tissues of the rat. Landschulz, K.T., Pathak, R.K., Rigotti, A., Krieger, M., Hobbs, H.H. J. Clin. Invest. (1996) [Pubmed]
  8. Charge isoforms of the adrenocortical pregnenolone-binding protein: influence of phosphorylation on isoformation and binding activity. Lee, Y.C., Driscoll, W.J., Strott, C.A. Proc. Natl. Acad. Sci. U.S.A. (1990) [Pubmed]
  9. The orphan nuclear receptor NGFIB regulates transcription of 3beta-hydroxysteroid dehydrogenase. implications for the control of adrenal functional zonation. Bassett, M.H., Suzuki, T., Sasano, H., De Vries, C.J., Jimenez, P.T., Carr, B.R., Rainey, W.E. J. Biol. Chem. (2004) [Pubmed]
  10. Adrenarche results from development of a 3beta-hydroxysteroid dehydrogenase-deficient adrenal reticularis. Gell, J.S., Carr, B.R., Sasano, H., Atkins, B., Margraf, L., Mason, J.I., Rainey, W.E. J. Clin. Endocrinol. Metab. (1998) [Pubmed]
  11. Effects of age and adrenocorticotropin on microsomal enzymes in guinea pig adrenal inner and outer cortices. Martin, K.O., Black, V.H. Endocrinology (1983) [Pubmed]
  12. Expression of the IGF system in human adrenal tissues from early infancy to late puberty: implications for the development of adrenarche. Baquedano, M.S., Berensztein, E., Saraco, N., Dorn, G.V., de Davila, M.T., Rivarola, M.A., Belgorosky, A. Pediatr. Res. (2005) [Pubmed]
  13. Adrenal gland differences associated with puberty and reproductive inhibition in Peromyscus maniculatus. Cherry, B.A., Cadigan, B., Mansourian, N., Nelson, C., Bradley, E.L. Gen. Comp. Endocrinol. (2002) [Pubmed]
  14. Adrenal activation of carbon tetrachloride: role of microsomal P450 isozymes. Colby, H.D., Purcell, H., Kominami, S., Takemori, S., Kossor, D.C. Toxicology (1994) [Pubmed]
  15. Expression and localization of human dopamine D2 and D4 receptor mRNA in the adrenal gland, aldosterone-producing adenoma, and pheochromocytoma. Wu, K.D., Chen, Y.M., Chu, T.S., Chueh, S.C., Wu, M.H., Bor-Shen, H. J. Clin. Endocrinol. Metab. (2001) [Pubmed]
  16. High resolution in situ hybridization to determine the cellular distribution of lymphocytic choriomeningitis virus RNA in the tissues of persistently infected mice: relevance to arenavirus disease and mechanisms of viral persistence. Fazakerley, J.K., Southern, P., Bloom, F., Buchmeier, M.J. J. Gen. Virol. (1991) [Pubmed]
  17. Conversion of pregnenolone to DHEA by human 17alpha-hydroxylase/17, 20-lyase (P450c17). Evidence that DHEA is produced from the released intermediate, 17alpha-hydroxypregnenolone. Soucy, P., Luu-The, V. Eur. J. Biochem. (2000) [Pubmed]
  18. Cholesterol side-chain cleavage activity in the outer and inner zones of the adrenal cortex. Obara, T., Strott, C.A. Biochem. Biophys. Res. Commun. (1984) [Pubmed]
  19. Differential production of adrenal steroids by purified cells of the human adrenal cortex is relative rather than absolute. Young, L.S., Murphy, G., Kelly, S.N., Smith, T.P., Cunningham, S.K., Joseph McKenna, T. Eur. J. Endocrinol. (2003) [Pubmed]
  20. Immunocytochemical analyses of dehydroepiandrosterone sulfotransferase in cultured human fetal adrenal cells. Parker, C.R., Stankovic, A.K., Falany, C.N., Faye-Petersen, O., Grizzle, W.E. J. Clin. Endocrinol. Metab. (1995) [Pubmed]
  21. Adrenocorticotropin, glucocorticoid, and androgen secretion in patients with new onset synovitis/rheumatoid arthritis: relations with indices of inflammation. Kanik, K.S., Chrousos, G.P., Schumacher, H.R., Crane, M.L., Yarboro, C.H., Wilder, R.L. J. Clin. Endocrinol. Metab. (2000) [Pubmed]
  22. Aging alters zonation in the adrenal cortex of men. Parker, C.R., Mixon, R.L., Brissie, R.M., Grizzle, W.E. J. Clin. Endocrinol. Metab. (1997) [Pubmed]
  23. Functional differences in cholesterol ester hydrolase and acyl-coenzyme-A/cholesterol acyltransferase between the outer and inner zones of the guinea pig adrenal cortex. Nishikawa, T., Mikami, K., Saito, Y., Tamura, Y., Yoshida, S. Endocrinology (1988) [Pubmed]
  24. Immune-endocrine interactions in the mammalian adrenal gland: facts and hypotheses. Nussdorfer, G.G., Mazzocchi, G. Int. Rev. Cytol. (1998) [Pubmed]
  25. GATA-6 is expressed in the human adrenal and regulates transcription of genes required for adrenal androgen biosynthesis. Jimenez, P., Saner, K., Mayhew, B., Rainey, W.E. Endocrinology (2003) [Pubmed]
  26. Influence of dietary sodium restriction on angiotensin II receptors in rat adrenals. Lehoux, J.G., Bird, I.M., Briere, N., Martel, D., Ducharme, L. Endocrinology (1997) [Pubmed]
  27. Corticotropin-releasing hormone as adrenal androgen secretagogue. Ibáñez, L., Potau, N., Marcos, M.V., de Zegher, F. Pediatr. Res. (1999) [Pubmed]
  28. Sex differences in adrenocortical structure and function. XI. Autoradiographic studies on cell proliferation and turnover in the adrenal cortex of the male and female rat and its dependence on testosterone and estradiol. Malendowicz, L.K., Jachimowicz, B. Cell Tissue Res. (1982) [Pubmed]
  29. Ultrastructural and immunohistochemical studies on the zona-reticularis cells of the adrenal cortex of normal and 3-methylcholanthrene-treated mice. Usa, M., Ishimura, K., Fujita, H., Sugano, S., Okamoto, M., Yamano, T. Histochemistry (1985) [Pubmed]
 
WikiGenes - Universities