The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)



Gene Review

S100A9  -  S100 calcium binding protein A9

Homo sapiens

Synonyms: 60B8AG, CAGB, CFAG, CGLB, Calgranulin-B, ...
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of S100A9


Psychiatry related information on S100A9

  • Inflammatory S100A9 and S100A12 proteins in Alzheimer's disease [3].
  • In contrast to these divergent amplitude changes, the latencies of all components except P14 and frontal N18 showed progressive prolongation from the awake state to slow-wave sleep [4].
  • METHOD: Plasma MIF concentrations and other standard risk factors were measured before and after participation in a diet and physical activity based weight management program [5].
  • The P14 latency was significantly prolonged after sleep deprivation [6].
  • Finally, L-5-HTP tends to reduce aggression, ferocity, and to a lesser extent stereotypy; MIF or piribedil, as well as reserpine, potentiates the stereotyped behaviors induced by apomorphine, whereas L-DOPA usually decreases them [7].

High impact information on S100A9

  • We identified a "hinge" region mutation in C1 inhibitor with a Val to Glu replacement at P14 Val-432 [8].
  • Lymphocytes from four of nine cromolyn-tolerant asthmatics demonstrated increased 3H-thymidine incorporation but none showed MIF production, whereas lymphocytes from normal subjects failed to react to cromolyn in either assay [9].
  • MIF mediation of sepsis [10].
  • These studies define a critical part for MIF in the pathogenesis of septic shock and identify a new target for therapeutic intervention [11].
  • Consequently, Jab1-mediated rescue of fibroblasts from growth arrest is blocked by MIF [12].

Chemical compound and disease context of S100A9


Biological context of S100A9


Anatomical context of S100A9


Associations of S100A9 with chemical compounds


Physical interactions of S100A9

  • Failure of tetramer formation was associated with a lack of functional activity of S100A8/S100A9 complexes in promoting the formation of microtubules [25].
  • Both the S100A8/S100A9 complex and S100A12 have been proven to be useful as diagnostic markers of inflammation especially in non-infectious inflammatory diseases such as arthritis, chronic inflammatory lung and bowel disease [26].
  • NIF interferes with the binding of a subset of these CD11b/CD18 ligands in a highly selective manner [27].
  • A single point mutation of Ser138 to Ala in the beta2 subunit abolished C3bi binding and cell adhesion but did not affect NIF binding [28].
  • In addition, immunogold double-labelling experiments revealed a clear co-localization of MRP8/MRP14 complexes with the type III intermediate filament vimentin [29].

Regulatory relationships of S100A9


Other interactions of S100A9


Analytical, diagnostic and therapeutic context of S100A9


  1. S100A8 and S100A9 in human arterial wall. Implications for atherogenesis. McCormick, M.M., Rahimi, F., Bobryshev, Y.V., Gaus, K., Zreiqat, H., Cai, H., Lord, R.S., Geczy, C.L. J. Biol. Chem. (2005) [Pubmed]
  2. Calcium-binding proteins S100A8 and S100A9 as novel diagnostic markers in human prostate cancer. Hermani, A., Hess, J., De Servi, B., Medunjanin, S., Grobholz, R., Trojan, L., Angel, P., Mayer, D. Clin. Cancer Res. (2005) [Pubmed]
  3. Inflammatory S100A9 and S100A12 proteins in Alzheimer's disease. Shepherd, C.E., Goyette, J., Utter, V., Rahimi, F., Yang, Z., Geczy, C.L., Halliday, G.M. Neurobiol. Aging (2006) [Pubmed]
  4. Dissociated changes of frontal and parietal somatosensory evoked potentials in sleep. Noguchi, Y., Yamada, T., Yeh, M., Matsubara, M., Kokubun, Y., Kawada, J., Shiraishi, G., Kajimoto, S. Neurology (1995) [Pubmed]
  5. Obesity, macrophage migration inhibitory factor, and weight loss. Church, T.S., Willis, M.S., Priest, E.L., Lamonte, M.J., Earnest, C.P., Wilkinson, W.J., Wilson, D.A., Giroir, B.P. International journal of obesity (2005) (2005) [Pubmed]
  6. The effect of sleep deprivation on median nerve somatosensory evoked potentials. Terney, D., Beniczky, S., Varga, E.T., Kéri, S., Nagy, H.G., Vécsei, L. Neurosci. Lett. (2005) [Pubmed]
  7. Apomorphine and piribedil in rats: biochemical and pharmacologic studies. Butterworth, R.F., Poignant, J.C., Barbeau, A. Advances in neurology. (1975) [Pubmed]
  8. C1 inhibitor hinge region mutations produce dysfunction by different mechanisms. Davis, A.E., Aulak, K., Parad, R.B., Stecklein, H.P., Eldering, E., Hack, C.E., Kramer, J., Strunk, R.C., Bissler, J., Rosen, F.S. Nat. Genet. (1992) [Pubmed]
  9. Immunologic components of hypersensitivity reactions to cromolyn sodium. Sheffer, A.L., Rocklin, R.E., Goetzl, E.J. N. Engl. J. Med. (1975) [Pubmed]
  10. MIF mediation of sepsis. Martin, T.R. Nat. Med. (2000) [Pubmed]
  11. Protection from septic shock by neutralization of macrophage migration inhibitory factor. Calandra, T., Echtenacher, B., Roy, D.L., Pugin, J., Metz, C.N., Hültner, L., Heumann, D., Männel, D., Bucala, R., Glauser, M.P. Nat. Med. (2000) [Pubmed]
  12. Intracellular action of the cytokine MIF to modulate AP-1 activity and the cell cycle through Jab1. Kleemann, R., Hausser, A., Geiger, G., Mischke, R., Burger-Kentischer, A., Flieger, O., Johannes, F.J., Roger, T., Calandra, T., Kapurniotu, A., Grell, M., Finkelmeier, D., Brunner, H., Bernhagen, J. Nature (2000) [Pubmed]
  13. S100A9-positive granulocytes and monocytes in lipopolysaccharide-induced anterior ocular inflammation. Chi, Z.L., Hayasaka, Y., Zhang, X.Y., Cui, H.S., Hayasaka, S. Exp. Eye Res. (2007) [Pubmed]
  14. Sex steroid regulation of macrophage migration inhibitory factor in normal and inflamed colon in the female rat. Houdeau, E., Moriez, R., Leveque, M., Salvador-Cartier, C., Waget, A., Leng, L., Bueno, L., Bucala, R., Fioramonti, J. Gastroenterology (2007) [Pubmed]
  15. Cetirizine, an H1-receptor antagonist, suppresses the expression of macrophage migration inhibitory factor: its potential anti-inflammatory action. Shimizu, T., Nishihira, J., Watanabe, H., Abe, R., Ishibashi, T., Shimizu, H. Clin. Exp. Allergy (2004) [Pubmed]
  16. Binding of two nuclear complexes to a novel regulatory element within the human S100A9 promoter drives the S100A9 gene expression. Kerkhoff, C., Hofmann, H.A., Vormoor, J., Melkonyan, H., Roth, J., Sorg, C., Klempt, M. J. Biol. Chem. (2002) [Pubmed]
  17. Proinflammatory activities of S100: proteins S100A8, S100A9, and S100A8/A9 induce neutrophil chemotaxis and adhesion. Ryckman, C., Vandal, K., Rouleau, P., Talbot, M., Tessier, P.A. J. Immunol. (2003) [Pubmed]
  18. Hyperzincaemia and hypercalprotectinaemia: a new disorder of zinc metabolism. Sampson, B., Fagerhol, M.K., Sunderkötter, C., Golden, B.E., Richmond, P., Klein, N., Kovar, I.Z., Beattie, J.H., Wolska-Kusnierz, B., Saito, Y., Roth, J. Lancet (2002) [Pubmed]
  19. MRP8 and MRP14 control microtubule reorganization during transendothelial migration of phagocytes. Vogl, T., Ludwig, S., Goebeler, M., Strey, A., Thorey, I.S., Reichelt, R., Foell, D., Gerke, V., Manitz, M.P., Nacken, W., Werner, S., Sorg, C., Roth, J. Blood (2004) [Pubmed]
  20. Up-regulation of metastasis-promoting S100A4 (Mts-1) in rheumatoid arthritis: putative involvement in the pathogenesis of rheumatoid arthritis. Klingelhöfer, J., Senolt, L., Baslund, B., Nielsen, G.H., Skibshøj, I., Pavelka, K., Neidhart, M., Gay, S., Ambartsumian, N., Hansen, B.S., Petersen, J., Lukanidin, E., Grigorian, M. Arthritis Rheum. (2007) [Pubmed]
  21. The two calcium-binding proteins, S100A8 and S100A9, are involved in the metabolism of arachidonic acid in human neutrophils. Kerkhoff, C., Klempt, M., Kaever, V., Sorg, C. J. Biol. Chem. (1999) [Pubmed]
  22. Biochemical characterization of the murine S100A9 (MRP14) protein suggests that it is functionally equivalent to its human counterpart despite its low degree of sequence homology. Nacken, W., Sopalla, C., Pröpper, C., Sorg, C., Kerkhoff, C. Eur. J. Biochem. (2000) [Pubmed]
  23. S100A9 mediates neutrophil adhesion to fibronectin through activation of beta2 integrins. Anceriz, N., Vandal, K., Tessier, P.A. Biochem. Biophys. Res. Commun. (2007) [Pubmed]
  24. Evidence for the involvement of the unique C-tail of S100A9 in the binding of arachidonic acid to the heterocomplex S100A8/A9. Sopalla, C., Leukert, N., Sorg, C., Kerkhoff, C. Biol. Chem. (2002) [Pubmed]
  25. Calcium-dependent tetramer formation of S100A8 and S100A9 is essential for biological activity. Leukert, N., Vogl, T., Strupat, K., Reichelt, R., Sorg, C., Roth, J. J. Mol. Biol. (2006) [Pubmed]
  26. Phagocyte-specific calcium-binding S100 proteins as clinical laboratory markers of inflammation. Foell, D., Frosch, M., Sorg, C., Roth, J. Clin. Chim. Acta (2004) [Pubmed]
  27. Functional interaction between the integrin antagonist neutrophil inhibitory factor and the I domain of CD11b/CD18. Muchowski, P.J., Zhang, L., Chang, E.R., Soule, H.R., Plow, E.F., Moyle, M. J. Biol. Chem. (1994) [Pubmed]
  28. Overlapping, but not identical, sites are involved in the recognition of C3bi, neutrophil inhibitory factor, and adhesive ligands by the alphaMbeta2 integrin. Zhang, L., Plow, E.F. J. Biol. Chem. (1996) [Pubmed]
  29. Ultrastructural localization of the S-100-like proteins MRP8 and MRP14 in monocytes is calcium-dependent. Burwinkel, F., Roth, J., Goebeler, M., Bitter, U., Wrocklage, V., Vollmer, E., Roessner, A., Sorg, C., Böcker, W. Histochemistry (1994) [Pubmed]
  30. CrossLinking of the CD69 Molecule Enhances S100A9 Production in Activated Neutrophils. Shimada, S., Nakamura, M., Tanaka, Y., Tsutsumi, K., Katano, M., Masuko, K., Yudoh, K., Koizuka, I., Kato, T. Microbiol. Immunol. (2007) [Pubmed]
  31. Identification of poly(ADP-ribose)polymerase-1 and Ku70/Ku80 as transcriptional regulators of S100A9 gene expression. Grote, J., K??nig, S., Ackermann, D., Sopalla, C., Benedyk, M., Los, M., Kerkhoff, C. BMC Mol. Biol. (2006) [Pubmed]
  32. Polymorphonuclear leucocyte (PMN) inhibitory factor prevents PMN-dependent endothelial cell injury by an anti-adhesive mechanism. Ohno, S., Malik, A.B. J. Cell. Physiol. (1997) [Pubmed]
  33. Macrophage migration inhibitory factor activates antigen-presenting dendritic cells and induces inflammatory cytokines in ulcerative colitis. Murakami, H., Akbar, S.M., Matsui, H., Horiike, N., Onji, M. Clin. Exp. Immunol. (2002) [Pubmed]
  34. S100A12 is expressed exclusively by granulocytes and acts independently from MRP8 and MRP14. Vogl, T., Pröpper, C., Hartmann, M., Strey, A., Strupat, K., van den Bos, C., Sorg, C., Roth, J. J. Biol. Chem. (1999) [Pubmed]
  35. Expression patterns of S100A7 (psoriasin) and S100A9 (calgranulin-B) in keratinocyte differentiation. Martinsson, H., Yhr, M., Enerbäck, C. Exp. Dermatol. (2005) [Pubmed]
  36. Novel insights into structure and function of MRP8 (S100A8) and MRP14 (S100A9). Kerkhoff, C., Klempt, M., Sorg, C. Biochim. Biophys. Acta (1998) [Pubmed]
  37. The analysis of S100A9 and S100A8 expression in matched sets of macroscopically normal colon mucosa and colorectal carcinoma: the S100A9 and S100A8 positive cells underlie and invade tumor mass. Stulík, J., Osterreicher, J., Koupilová, K., Knízek, n.u.l.l., Macela, A., Bures, J., Jandík, P., Langr, F., Dedic, K., Jungblut, P.R. Electrophoresis (1999) [Pubmed]
WikiGenes - Universities