The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Parietal Bone

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Parietal Bone

 

High impact information on Parietal Bone

  • Adolescent and adult OPG-/- mice exhibit a decrease in total bone density characterized by severe trabecular and cortical bone porosity, marked thinning of the parietal bones of the skull, and a high incidence of fractures [5].
  • To determine if activin shares these properties, recombinant human activin-A (A-chain homodimer) was examined in osteoblast-enriched cultures obtained from fetal-rat parietal bone [6].
  • Immunohistochemical analysis revealed abundant accumulation of OPN protein in the matrix of newly formed bone on the inner edge of the parietal bone within the mechanically expanded sutures [7].
  • In the organ culture studies, 20-day-old fetal rat parietal bones were incubated for 96 h with CD or control serum, serum preincubated with a neutralizing antibody to each cytokine or a nonimmune immunoglobulin control, and with IL-6 [8].
  • Runx2 expression was localized to the critical area of cranial suture closure, being found in parietal bones, osteogenic fronts, and sutural mesenchyme [9].
 

Chemical compound and disease context of Parietal Bone

 

Biological context of Parietal Bone

 

Anatomical context of Parietal Bone

 

Associations of Parietal Bone with chemical compounds

 

Gene context of Parietal Bone

  • Overexpression of Msx2 under the control of this promoter is sufficient to enhance parietal bone growth into the sagittal suture by P6 [25].
  • Osteoprotegerin is produced when prostaglandin synthesis is inhibited causing osteoclasts to detach from the surface of mouse parietal bone and attach to the endocranial membrane [26].
  • Both PTH and PTHrP increased 45Ca release at low concentrations and prostaglandin production at high concentrations in mouse parietal bones [27].
  • TGF beta 2 had effects similar to those of TGF beta 1 on the parietal bones in vivo [28].
  • IGF-I and -II were studied for their effects on collagen synthesis and degradation in cultures of intact fetal rat calvariae and on type I collagen transcript levels in osteoblast-enriched (Ob) cells from fetal rat parietal bone [29].
 

Analytical, diagnostic and therapeutic context of Parietal Bone

References

  1. Simultaneous assessment of bone resorption and formation in cultures of 22-day fetal rat parietal bones: effects of parathyroid hormone and prostaglandin E2. Vargas, S.J., Raisz, L.G. Bone (1990) [Pubmed]
  2. The role of bone centers in the pathogenesis of craniosynostosis: an embryologic approach using CT measurements in isolated craniosynostosis and Apert and Crouzon syndromes. Mathijssen, I.M., Vaandrager, J.M., van der Meulen, J.C., Pieterman, H., Zonneveld, F.W., Kreiborg, S., Vermeij-Keers, C. Plast. Reconstr. Surg. (1996) [Pubmed]
  3. Rare neonatal intracerebral hemorrhage. Two cases in full-term infants. Hayashi, T., Harada, K., Honda, E., Utsunomiya, H., Hashimoto, T. Child's nervous system : ChNS : official journal of the International Society for Pediatric Neurosurgery. (1987) [Pubmed]
  4. Cleidocranial dysplasia with severe parietal bone dysplasia: C-terminal RUNX2 mutations. Cunningham, M.L., Seto, M.L., Hing, A.V., Bull, M.J., Hopkin, R.J., Leppig, K.A. Birth Defects Res. Part A Clin. Mol. Teratol. (2006) [Pubmed]
  5. osteoprotegerin-deficient mice develop early onset osteoporosis and arterial calcification. Bucay, N., Sarosi, I., Dunstan, C.R., Morony, S., Tarpley, J., Capparelli, C., Scully, S., Tan, H.L., Xu, W., Lacey, D.L., Boyle, W.J., Simonet, W.S. Genes Dev. (1998) [Pubmed]
  6. Activin-A binding and biochemical effects in osteoblast-enriched cultures from fetal-rat parietal bone. Centrella, M., McCarthy, T.L., Canalis, E. Mol. Cell. Biol. (1991) [Pubmed]
  7. Osteopontin expression in osteoblasts and osteocytes during bone formation under mechanical stress in the calvarial suture in vivo. Morinobu, M., Ishijima, M., Rittling, S.R., Tsuji, K., Yamamoto, H., Nifuji, A., Denhardt, D.T., Noda, M. J. Bone Miner. Res. (2003) [Pubmed]
  8. Effect of Crohn's disease on bone metabolism in vitro: a role for interleukin-6. Sylvester, F.A., Wyzga, N., Hyams, J.S., Gronowicz, G.A. J. Bone Miner. Res. (2002) [Pubmed]
  9. Differential expression patterns of Runx2 isoforms in cranial suture morphogenesis. Park, M.H., Shin, H.I., Choi, J.Y., Nam, S.H., Kim, Y.J., Kim, H.J., Ryoo, H.M. J. Bone Miner. Res. (2001) [Pubmed]
  10. Stimulative effects of cadmium on bone resorption in neonatal parietal bone resorption. Miyahara, T., Takata, M., Mori-Uchi, S., Miyata, M., Nagai, M., Sugure, A., Matsusista, M., Kozuka, H., Kuze, S. Toxicology (1992) [Pubmed]
  11. Cortisol modulates the actions of interleukin-1 alpha on bone formation, resorption, and prostaglandin production in cultured mouse parietal bones. Marusić, A., Raisz, L.G. Endocrinology (1991) [Pubmed]
  12. Bone-related gene profiles in developing calvaria. Cho, J.Y., Lee, W.B., Kim, H.J., Mi Woo, K., Baek, J.H., Choi, J.Y., Hur, C.G., Ryoo, H.M. Gene (2006) [Pubmed]
  13. Subperiosteal implantation of bone morphogenetic protein adsorbed to hydroxyapatite. Horisaka, Y., Okamoto, Y., Matsumoto, N., Yoshimura, Y., Kawada, J., Yamashita, K., Takagi, T. Clin. Orthop. Relat. Res. (1991) [Pubmed]
  14. Surgical model to assess the effects and optimal timing of craniofacial fixation. Sims, C.D., Butler, P.E., Casanova, R., Randolph, M.A., Ahn, D.K., Yaremchuk, M.J. The Journal of craniofacial surgery. (1996) [Pubmed]
  15. Cranial sutures require tissue interactions with dura mater to resist osseous obliteration in vitro. Opperman, L.A., Passarelli, R.W., Morgan, E.P., Reintjes, M., Ogle, R.C. J. Bone Miner. Res. (1995) [Pubmed]
  16. Osteoclasts are not the major source of interleukin-6 in mouse parietal bones. Holt, I., Davie, M.W., Marshall, M.J. Bone (1996) [Pubmed]
  17. Effect of stopping fluoride administration on the distribution profiles of fluoride in three different kinds of rat bones. Li, J., Nakagaki, H., Kato, K., Tsuboi, S., Kato, S., Morita, I., Ohno, N., Kameyama, Y., Chen, R., Robinson, C. Calcif. Tissue Int. (1995) [Pubmed]
  18. Subperiosteal implantation of octacalcium phosphate (OCP) stimulates both chondrogenesis and osteogenesis in the tibia, but only osteogenesis in the parietal bone of a rat. Sasano, Y., Kamakura, S., Nakamura, M., Suzuki, O., Mizoguchi, I., Akita, H., Kagayama, M. Anat. Rec. (1995) [Pubmed]
  19. Porous polyethylene for tissue engineering applications in diabetic rats treated with calcitonin: histomorphometric analysis. Claro, F.A., Lima, J.R., Salgado, M.A., Gomes, M.F. The International journal of oral & maxillofacial implants. (2005) [Pubmed]
  20. Effect of 1,25-dihydroxyvitamin D3 on prostaglandin E2 production in cultured mouse parietal bones. Klein-Nulend, J., Pilbeam, C.C., Raisz, L.G. J. Bone Miner. Res. (1991) [Pubmed]
  21. Interleukin-4 inhibits prostaglandin G/H synthase-2 and cytosolic phospholipase A2 induction in neonatal mouse parietal bone cultures. Kawaguchi, H., Nemoto, K., Raisz, L.G., Harrison, J.R., Voznesensky, O.S., Alander, C.B., Pilbeam, C.C. J. Bone Miner. Res. (1996) [Pubmed]
  22. Effects of deflazacort on aspects of bone formation in cultures of intact calvariae and osteoblast-enriched cells. Canalis, E., Avioli, L. J. Bone Miner. Res. (1992) [Pubmed]
  23. Anabolic effects of 3,3',5-triiodothyronine and triiodothyroacetic acid in cultured neonatal mouse parietal bones. Kawaguchi, H., Pilbeam, C.C., Raisz, L.G. Endocrinology (1994) [Pubmed]
  24. Ascorbic acid alters collagen integrins in bone culture. Ganta, D.R., McCarthy, M.B., Gronowicz, G.A. Endocrinology (1997) [Pubmed]
  25. Msx2 gene dosage influences the number of proliferative osteogenic cells in growth centers of the developing murine skull: a possible mechanism for MSX2-mediated craniosynostosis in humans. Liu, Y.H., Tang, Z., Kundu, R.K., Wu, L., Luo, W., Zhu, D., Sangiorgi, F., Snead, M.L., Maxson, R.E. Dev. Biol. (1999) [Pubmed]
  26. Osteoprotegerin is produced when prostaglandin synthesis is inhibited causing osteoclasts to detach from the surface of mouse parietal bone and attach to the endocranial membrane. O'Brien, E.A., Williams, J.H., Marshall, M.J. Bone (2001) [Pubmed]
  27. Comparison of the effects of synthetic human parathyroid hormone (PTH)-(1-34)-related peptide of malignancy and bovine PTH-(1-34) on bone formation and resorption in organ culture. Klein-Nulend, J., Fall, P.M., Raisz, L.G. Endocrinology (1990) [Pubmed]
  28. In vivo stimulation of bone formation by transforming growth factor-beta. Noda, M., Camilliere, J.J. Endocrinology (1989) [Pubmed]
  29. Regulatory effects of insulin-like growth factors I and II on bone collagen synthesis in rat calvarial cultures. McCarthy, T.L., Centrella, M., Canalis, E. Endocrinology (1989) [Pubmed]
  30. The effect of glucocorticoids on osteoblast function. The effect of corticosterone on osteoblast expression of beta 1 integrins. Doherty, W.J., DeRome, M.E., McCarthy, M.B., Gronowicz, G.A. The Journal of bone and joint surgery. American volume. (1995) [Pubmed]
  31. Stimulation of bone formation in vivo by insulin-like growth factor-II in rats. Ishibe, M., Ishibashi, T., Kaneda, K., Koda, T., Rosier, R.N., Puzas, J.E. Calcif. Tissue Int. (1998) [Pubmed]
  32. Angiogenesis after sintered bone implantation in rat parietal bone. Ohtsubo, S., Matsuda, M., Takekawa, M. Histol. Histopathol. (2003) [Pubmed]
  33. Bilateral symmetric photon defects in the parietal bones on Tc-99m MDP bone scintigraphy: bilateral parietal thinning. Lim, S.T., Sohn, M.H. Clinical nuclear medicine. (2001) [Pubmed]
  34. The effect of Kampo formulae on bone resorption in vitro and in vivo. I. Active constituents of Tsu-kan-gan. Li, H., Miyahara, T., Tezuka, Y., Namba, T., Nemoto, N., Tonami, S., Seto, H., Tada, T., Kadota, S. Biol. Pharm. Bull. (1998) [Pubmed]
 
WikiGenes - Universities