The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Chemical Compound Review

Dilactide     3,6-dimethyl-1,4-dioxane-2,5- dione

Synonyms: LACTIDE, L-Lactide, DL-Lactide, DL-Dilactide, Resomer R208, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Dilactide

  • However, significant primary and secondary salivary IgA and serum IgG antibody responses to HDS were induced in all rats when cholera holotoxin (CT) or a detoxified mutant Escherichia coli heat-labile enterotoxin (R192G LT) were intranasally administered with HDS peptide constructs in PLGA [1].
  • The objective of this study was to evaluate the efficacy of a new biodegradable, gentamicin-loaded poly(D,L-lactide) (PDLLA) coating of orthopedic devices in preventing implant-related osteomyelitis [2].
  • The effect of thermal treatment on sterility, molecular and mechanical properties of various polylactides. I. Poly(L-lactide) [3].
  • No signs of degradation of or of an osteolytic foreign-body reaction to poly(L-lactide) at the host tissue-implant interface could be observed within the follow-up times of this study [4].
  • Poly (DL-lactide) differed from the other polyesters studied, the rate of chain scission increasing after the commencement of weight loss [5].
 

High impact information on Dilactide

  • Several methods of facilitation of the immune response were studied: the incorporation of peptides in bioadhesive poly(D,L-lactide-coglycolide) (PLGA) microparticles, the use of monoepitopic (HDS) or diepitopic (HDS-GLU) peptide constructs, or the use of mucosal adjuvants [1].
  • In order to compare the prophylactic effect provided by a poly(D,L-lactide) sustained-release device (SRD) containing isometamidium (ISMM) with that provided by the classical intramuscular injection of the drug, a field trial was carried out at the Madina Diassa Ranch in Mali [6].
  • The mouse macrophage cell line RAW 264.7 can be stimulated to produce nitric oxide (NO) by muramyltripeptide cholesterol included within biodegradable poly(D,L-lactide) nanocapsules (NC MTPChol) [7].
  • The ability of amphiphilic block copolymers that consist of polyethylenimine (PEI) and poly(L-lactide) (PLLA) to modulate the delivery of plasmid DNA was evaluated [8].
  • The space between the inner holes was coated with 50 microg IGF-I and 10 microg TGF-beta1 incorporated in the poly(d,l-lactide) coating or with the coating alone [9].
 

Chemical compound and disease context of Dilactide

 

Biological context of Dilactide

 

Anatomical context of Dilactide

 

Associations of Dilactide with other chemical compounds

 

Gene context of Dilactide

 

Analytical, diagnostic and therapeutic context of Dilactide

  • The anti-Id to GLXA, delivered either systemically in soluble form or orally after encapsulation in poly(lactide) microspheres, induced significant protective immunity against ocular challenge of mice with a human biovar of C. trachomatis [32].
  • Salivary immunoglobulin A (IgA) responses were not detected after intranasal administration of diepitopic HDS-GLU peptide constructs in alum or after incorporation into PLGA microparticles [1].
  • Electrospinning was used to fabricate biodegradable non-woven poly(lactide)- and poly(glycolide)-based (PLGA) scaffolds for cardiac tissue engineering applications [33].
  • Thirtysix medial femoral condyle osteotomies of sheep were fixed with either 3 poly-L/DL-lactide pins or 3 composite pins, and the pin canal widths were measured with conventional radiographs, with CT, MRI, and histologically after 3, 18, and 36 months [34].
  • Microencapsulation and dissolution properties of a neuroleptic in a biodegradable polymer, poly(d,l-lactide) [35].

References

  1. Facilitated intranasal induction of mucosal and systemic immunity to mutans streptococcal glucosyltransferase peptide vaccines. Smith, D.J., King, W.F., Barnes, L.A., Trantolo, D., Wise, D.L., Taubman, M.A. Infect. Immun. (2001) [Pubmed]
  2. Gentamicin coating of metallic implants reduces implant-related osteomyelitis in rats. Lucke, M., Schmidmaier, G., Sadoni, S., Wildemann, B., Schiller, R., Haas, N.P., Raschke, M. Bone (2003) [Pubmed]
  3. The effect of thermal treatment on sterility, molecular and mechanical properties of various polylactides. I. Poly(L-lactide). Gogolewski, S., Mainil-Varlet, P. Biomaterials (1996) [Pubmed]
  4. In vivo monitoring of the degradation process of bioresorbable polymeric implants using magnetic resonance imaging. Pihlajamäki, H., Kinnunen, J., Böstman, O. Biomaterials (1997) [Pubmed]
  5. Aliphatic polyesters II. The degradation of poly (DL-lactide), poly (epsilon-caprolactone), and their copolymers in vivo. Pitt, C.G., Gratzl, M.M., Kimmel, G.L., Surles, J., Schindler, A. Biomaterials (1981) [Pubmed]
  6. Field evaluation of the prophylactic effect of an isometamidium sustained-release device against trypanosomiasis in cattle. Diarra, B., Diall, O., Geerts, S., Kageruka, P., Lemmouchi, Y., Schacht, E., Eisler, M.C., Holmes, P. Antimicrob. Agents Chemother. (1998) [Pubmed]
  7. Modulation of nitric oxide production in RAW 264.7 cells by transforming growth factor-beta and interleukin-10: differential effects on free and encapsulated immunomodulator. Seyler, I., Appel, M., Devissaguet, J.P., Legrand, P., Barratt, G. J. Leukoc. Biol. (1997) [Pubmed]
  8. Polymer-DNA hybrid nanoparticles based on folate-polyethylenimine-block-poly(L-lactide). Wang, C.H., Hsiue, G.H. Bioconjug. Chem. (2005) [Pubmed]
  9. Local delivery of growth factors from coated titanium plates increases osteotomy healing in rats. Wildemann, B., Bamdad, P., Holmer, C.h., Haas, N.P., Raschke, M., Schmidmaier, G. Bone (2004) [Pubmed]
  10. A 5-7 year in vivo study of high-strength hydroxyapatite/poly(L-lactide) composite rods for the internal fixation of bone fractures. Hasegawa, S., Ishii, S., Tamura, J., Furukawa, T., Neo, M., Matsusue, Y., Shikinami, Y., Okuno, M., Nakamura, T. Biomaterials (2006) [Pubmed]
  11. Strong systemic and mucosal immune responses to surface-modified PLGA microspheres containing recombinant Hepatitis B antigen administered intranasally. Jaganathan, K.S., Vyas, S.P. Vaccine (2006) [Pubmed]
  12. Therapeutic evaluation of free and nanocapsule-encapsulated atovaquone in the treatment of murine visceral leishmaniasis. Cauchetier, E., Paul, M., Rivollet, D., Fessi, H., Astier, A., Deniau, M. Ann. Trop. Med. Parasitol. (2003) [Pubmed]
  13. Polymer-assisted regenerative therapy: case reports of 22 consecutively treated periodontal defects with a novel combined surgical approach. Rosen, P.S., Reynolds, M.A. J. Periodontol. (1999) [Pubmed]
  14. High density binding of proteins and peptides to poly(D,L-lactide) grafted with polyacrylic acid. Steffens, G.C., Nothdurft, L., Buse, G., Thissen, H., Höcker, H., Klee, D. Biomaterials (2002) [Pubmed]
  15. Kinetics of protein diffusion from a poly(D,L-lactide) reservoir system. Marcotte, N., Polk, A., Goosen, M.F. Journal of pharmaceutical sciences. (1990) [Pubmed]
  16. Bone regeneration in segmental defects with resorbable polymeric membranes: IV. Does the polymer chemical composition affect the healing process? Gogolewski, S., Pineda, L., Büsing, C.M. Biomaterials (2000) [Pubmed]
  17. Enhancement of bone formation by drawn poly(L-lactide). Ikada, Y., Shikinami, Y., Hara, Y., Tagawa, M., Fukada, E. J. Biomed. Mater. Res. (1996) [Pubmed]
  18. Poly(L-Lactide) microfilaments enhance peripheral nerve regeneration across extended nerve lesions. Ngo, T.T., Waggoner, P.J., Romero, A.A., Nelson, K.D., Eberhart, R.C., Smith, G.M. J. Neurosci. Res. (2003) [Pubmed]
  19. Biomembranes enriched with TGFbeta1 favor bone matrix protein expression by human osteoblasts in vitro. Lilli, C., Marinucci, L., Stabellini, G., Belcastro, S., Becchetti, E., Balducci, C., Staffolani, N., Locci, P. J. Biomed. Mater. Res. (2002) [Pubmed]
  20. Chondrocyte phenotype in engineered fibrous matrix is regulated by fiber size. Li, W.J., Jiang, Y.J., Tuan, R.S. Tissue Eng. (2006) [Pubmed]
  21. Development and in vitro characterisation of novel bioresorbable and bioactive composite materials based on polylactide foams and Bioglass for tissue engineering applications. Roether, J.A., Boccaccini, A.R., Hench, L.L., Maquet, V., Gautier, S., Jérĵme, R. Biomaterials (2002) [Pubmed]
  22. Pulmonary delivery of insulin with nebulized DL-lactide/glycolide copolymer (PLGA) nanospheres to prolong hypoglycemic effect. Kawashima, Y., Yamamoto, H., Takeuchi, H., Fujioka, S., Hino, T. Journal of controlled release : official journal of the Controlled Release Society. (1999) [Pubmed]
  23. Biodegradable p(DLLA-epsilon-CL) nerve guides versus autologous nerve grafts: electromyographic and video analysis. Meek, M.F., Van Der Werff, J.F., Nicolai, J.P., Gramsbergen, A. Muscle Nerve (2001) [Pubmed]
  24. Hydroxylapatite/poly(L-lactide) composites: an animal study on push-out strengths and interface histology. Verheyen, C.C., de Wijn, J.R., van Blitterswijk, C.A., de Groot, K., Rozing, P.M. J. Biomed. Mater. Res. (1993) [Pubmed]
  25. Drug release characteristics of multi-reservoir type microspheres with poly(dl-lactide-co-glycolide) and poly(dl-lactide). Matsumoto, A., Matsukawa, Y., Suzuki, T., Yoshino, H. Journal of controlled release : official journal of the Controlled Release Society. (2005) [Pubmed]
  26. Influence of poly(DL-lactide) nanocapsules on the biliary clearance and enterohepatic circulation of indomethacin in the rabbit. Fawaz, F., Bonini, F., Guyot, M., Lagueny, A.M., Fessi, H., Devissaguet, J.P. Pharm. Res. (1993) [Pubmed]
  27. Bone morphogenetic protein-2 coating of titanium implants increases biomechanical strength and accelerates bone remodeling in fracture treatment: a biomechanical and histological study in rats. Schmidmaier, G., Wildemann, B., Cromme, F., Kandziora, F., Haas, N.P., Raschke, M. Bone (2002) [Pubmed]
  28. In vitro hydrolysis of blends from enantiomeric poly(lactide)s. Part 4: well-homo-crystallized blend and nonblended films. Tsuji, H. Biomaterials (2003) [Pubmed]
  29. Biodegradable poly(D,L-lactide) coating of implants for continuous release of growth factors. Schmidmaier, G., Wildemann, B., Stemberger, A., Haas, N.P., Raschke, M. J. Biomed. Mater. Res. (2001) [Pubmed]
  30. Differences in the fusion and resorption activity of human osteoclasts after stimulation with different growth factors released from a polylactide carrier. Wildemann, B., Kadow-Romacker, A., Lübberstedt, M., Raschke, M., Haas, N.P., Schmidmaier, G. Calcif. Tissue Int. (2005) [Pubmed]
  31. IGF-I and TGF-beta 1 incorporated in a poly(D,L-lactide) implant coating stimulates osteoblast differentiation and collagen-1 production but reduces osteoblast proliferation in cell culture. Schmidmaier, G., Wildemann, B., Lübberstedt, M., Haas, N.P., Raschke, M. Journal of biomedical materials research. Part B, Applied biomaterials. (2003) [Pubmed]
  32. Oral immunization with an anti-idiotypic antibody to the exoglycolipid antigen protects against experimental Chlamydia trachomatis infection. Whittum-Hudson, J.A., An, L.L., Saltzman, W.M., Prendergast, R.A., MacDonald, A.B. Nat. Med. (1996) [Pubmed]
  33. Electrospun fine-textured scaffolds for heart tissue constructs. Zong, X., Bien, H., Chung, C.Y., Yin, L., Fang, D., Hsiao, B.S., Chu, B., Entcheva, E. Biomaterials (2005) [Pubmed]
  34. A comparative radiological assessment of polylactide pins over 3 years in vivo. Prokop, A., Jubel, A., Hahn, U., Dietershagen, M., Bleidistel, M., Peters, C., Höfl, A., Rehm, K.E. Biomaterials (2005) [Pubmed]
  35. Microencapsulation and dissolution properties of a neuroleptic in a biodegradable polymer, poly(d,l-lactide). Suzuki, K., Price, J.C. Journal of pharmaceutical sciences. (1985) [Pubmed]
 
WikiGenes - Universities