The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 

Links

 

Gene Review

Sparc  -  secreted acidic cysteine rich glycoprotein

Mus musculus

Synonyms: AA517111, BM-40, Basement-membrane protein 40, ON, Osteonectin, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Sparc

 

Psychiatry related information on Sparc

 

High impact information on Sparc

  • Here we show that secreted protein acidic and rich in cysteine (SPARC), an anti-adhesive glycoprotein present in the basolateral amygdala, contributes to the establishment of locomotor sensitization [7].
  • Increased sensitivity to the stimulant effects of morphine conferred by anti-adhesive glycoprotein SPARC in amygdala [7].
  • Secreted protein, acidic and rich in cysteine (SPARC), also known as osteonectin or BM-40, is a Ca2+-binding matricellular glycoprotein involved in development, wound healing, and neoplasia [9].
  • Together, the data indicate that SPARC produced by host leukocytes, rather than the tumor, determines the assembly and function of tumor-associated stroma through the organization of collagen type IV [9].
  • However, the role of SPARC in tumors is ill defined mostly because it is expressed by both tumor and stromal cells, especially inflammatory cells [9].
 

Chemical compound and disease context of Sparc

  • Compromised production of extracellular matrix in mice lacking secreted protein, acidic and rich in cysteine (SPARC) leads to a reduced foreign body reaction to implanted biomaterials [4].
  • We therefore investigated the development of pulmonary fibrosis induced by bleomycin administered either intratracheally or intraperitoneally in mice deficient in SPARC [10].
  • A novel acidic glycoprotein, BM-40, with Mr = 40,000, was purified from the basement-membrane-producing mouse EHS tumor and characterized with regard to its unique chemical and antigenic properties [11].
  • This study is an investigation of the role of SPARC in streptozotocin (STZ)-induced diabetic nephropathy (DN) of 6-mo duration in wild type (WT) and SPARC-null mice [12].
  • SU5416-treated tumors demonstrated reduced vascular density and vascular surface in the tumor periphery accompanied by marked inhibition of glioma invasion and decreased SPARC expression [13].
 

Biological context of Sparc

 

Anatomical context of Sparc

  • In order to analyse the function of this protein in vivo, the endogenous Sparc locus was disrupted by homologous recombination in murine embryonic stem cells [17].
  • Disruption of the Sparc locus in mice alters the differentiation of lenticular epithelial cells and leads to cataract formation [18].
  • 2ar RNA is first detected in developing limb bones and calvaria at 14.5 d p.c., in a population of cells distinct from those expressing SPARC (osteonectin) [19].
  • Osteonectin was expressed by osteoblasts and hypertrophic chondrocytes as well, whereas in the molars it was produced exclusively by odontoblasts [20].
  • We have examined the role of SPARC in cell transformation induced chemically with 7,12-dimethylbenz[a]anthracene (DMBA) and 12-tetradecanoylphorbol-13-acetate (TPA) in embryonic fibroblasts and in the skin of mice [2].
 

Associations of Sparc with chemical compounds

 

Physical interactions of Sparc

 

Regulatory relationships of Sparc

  • Fibroblasts isolated from homozygous Mov-13 mice did not contract native type I collagen gels as efficiently as fibroblasts from heterozygous littermates; however, addition of exogenous SPARC enhanced the contraction of collagen by homozygous Mov-13 fibroblasts [26].
  • Using mice with targeted gene deletions, we show that hevin is central to the progression of biomaterial-induced inflammation whereas SPARC regulates the formation of the collagenous capsule [27].
  • SPARC enhanced the expression of bmp2 and nkx2.5 in embryoid bodies and fetal cardiomyocytes [28].
  • The proportion of osteonectin mRNA-expressing cells was greater than that of osteopontin mRNA-expressing cells in hypertrophic chondrocytes and osteoblast-like cells [29].
  • A hairless SPARC-null mouse was developed and compared to control SKH1 hairless mice in terms of skin tumor induction and extracellular matrix changes occurring in response to UV-irradiation [30].
  • We conclude that SPARC protects cells from stress-induced apoptosis in vitro via an interaction with integrin beta1 heterodimers that enhances ILK activation and pro-survival activity [31].
 

Other interactions of Sparc

  • Developmental expression of 2ar (osteopontin) and SPARC (osteonectin) RNA as revealed by in situ hybridization [19].
  • However examination of the subchromosomal region containing all three loci by pulsed field gel analysis showed that SPARC is at least 400-500 kb distant from the region containing the two CSF genes [32].
  • The exon structure of the mouse Sc1 gene is very similar to the mouse Sparc gene [15].
  • TIMP (tissue inhibitor of metalloproteinase) transcripts show a very similar distribution to those for Sparc [33].
  • Overexpression of dominant-negative Smad3 in Mv1Lu cells, which abrogated growth arrest by TGF-beta, also attenuated growth arrest stimulated by SPARC [34].
 

Analytical, diagnostic and therapeutic context of Sparc

References

  1. SPARC regulates extracellular matrix organization through its modulation of integrin-linked kinase activity. Barker, T.H., Baneyx, G., Cardó-Vila, M., Workman, G.A., Weaver, M., Menon, P.M., Dedhar, S., Rempel, S.A., Arap, W., Pasqualini, R., Vogel, V., Sage, E.H. J. Biol. Chem. (2005) [Pubmed]
  2. Reduced excision repair cross-complementing 1 expression associates with enhanced papilloma formation and fibroblast transformation after genetic disruption of secreted protein acidic and rich in cysteine. Kato, Y., Tsukuda, M., Nagashima, Y., Koshika, S., Sakai, N., Yao, M., Kubota, Y., Aoki, I., Colledge, W.H., Foidart, J.M., Hata, R., Thompson, E.W. Int. J. Oncol. (2005) [Pubmed]
  3. Osteopenia and decreased bone formation in osteonectin-deficient mice. Delany, A.M., Amling, M., Priemel, M., Howe, C., Baron, R., Canalis, E. J. Clin. Invest. (2000) [Pubmed]
  4. Compromised production of extracellular matrix in mice lacking secreted protein, acidic and rich in cysteine (SPARC) leads to a reduced foreign body reaction to implanted biomaterials. Puolakkainen, P., Bradshaw, A.D., Kyriakides, T.R., Reed, M., Brekken, R., Wight, T., Bornstein, P., Ratner, B., Sage, E.H. Am. J. Pathol. (2003) [Pubmed]
  5. Mechanical strain increases SPARC levels in podocytes: implications for glomerulosclerosis. Durvasula, R.V., Shankland, S.J. Am. J. Physiol. Renal Physiol. (2005) [Pubmed]
  6. Deficiency of SPARC suppresses intestinal tumorigenesis in APCMin/+ mice. Sansom, O.J., Mansergh, F.C., Evans, M.J., Wilkins, J.A., Clarke, A.R. Gut (2007) [Pubmed]
  7. Increased sensitivity to the stimulant effects of morphine conferred by anti-adhesive glycoprotein SPARC in amygdala. Ikemoto, M., Takita, M., Imamura, T., Inoue, K. Nat. Med. (2000) [Pubmed]
  8. The matricellular protein SPARC/osteonectin as a newly identified factor up-regulated in obesity. Tartare-Deckert, S., Chavey, C., Monthouel, M.N., Gautier, N., Van Obberghen, E. J. Biol. Chem. (2001) [Pubmed]
  9. Leukocyte, rather than tumor-produced SPARC, determines stroma and collagen type IV deposition in mammary carcinoma. Sangaletti, S., Stoppacciaro, A., Guiducci, C., Torrisi, M.R., Colombo, M.P. J. Exp. Med. (2003) [Pubmed]
  10. Bleomycin-induced pulmonary injury in mice deficient in SPARC. Savani, R.C., Zhou, Z., Arguiri, E., Wang, S., Vu, D., Howe, C.C., DeLisser, H.M. Am. J. Physiol. Lung Cell Mol. Physiol. (2000) [Pubmed]
  11. Purification and tissue distribution of a small protein (BM-40) extracted from a basement membrane tumor. Dziadek, M., Paulsson, M., Aumailley, M., Timpl, R. Eur. J. Biochem. (1986) [Pubmed]
  12. Amelioration of diabetic nephropathy in SPARC-null mice. Taneda, S., Pippin, J.W., Sage, E.H., Hudkins, K.L., Takeuchi, Y., Couser, W.G., Alpers, C.E. J. Am. Soc. Nephrol. (2003) [Pubmed]
  13. Targeting angiogenesis inhibits tumor infiltration and expression of the pro-invasive protein SPARC. Vajkoczy, P., Menger, M.D., Goldbrunner, R., Ge, S., Fong, T.A., Vollmar, B., Schilling, L., Ullrich, A., Hirth, K.P., Tonn, J.C., Schmiedek, P., Rempel, S.A. Int. J. Cancer (2000) [Pubmed]
  14. Developmental and transformation-sensitive expression of the Sparc gene on mouse chromosome 11. Mason, I.J., Murphy, D., Münke, M., Francke, U., Elliott, R.W., Hogan, B.L. EMBO J. (1986) [Pubmed]
  15. The exon structure of the mouse Sc1 gene is very similar to the mouse Sparc gene. McKinnon, P.J., Kapsetaki, M., Margolskee, R.F. Genome Res. (1996) [Pubmed]
  16. Gene expression changes during cataract progression in Sparc null mice: differential regulation of mouse globins in the lens. Mansergh, F.C., Wride, M.A., Walker, V.E., Adams, S., Hunter, S.M., Evans, M.J. Mol. Vis. (2004) [Pubmed]
  17. Mice deficient for the secreted glycoprotein SPARC/osteonectin/BM40 develop normally but show severe age-onset cataract formation and disruption of the lens. Gilmour, D.T., Lyon, G.J., Carlton, M.B., Sanes, J.R., Cunningham, J.M., Anderson, J.R., Hogan, B.L., Evans, M.J., Colledge, W.H. EMBO J. (1998) [Pubmed]
  18. Disruption of the Sparc locus in mice alters the differentiation of lenticular epithelial cells and leads to cataract formation. Bassuk, J.A., Birkebak, T., Rothmier, J.D., Clark, J.M., Bradshaw, A., Muchowski, P.J., Howe, C.C., Clark, J.I., Sage, E.H. Exp. Eye Res. (1999) [Pubmed]
  19. Developmental expression of 2ar (osteopontin) and SPARC (osteonectin) RNA as revealed by in situ hybridization. Nomura, S., Wills, A.J., Edwards, D.R., Heath, J.K., Hogan, B.L. J. Cell Biol. (1988) [Pubmed]
  20. Expression of matrix proteins during the development of mineralized tissues. Sommer, B., Bickel, M., Hofstetter, W., Wetterwald, A. Bone (1996) [Pubmed]
  21. Expression of genes encoding connective tissue proteins in androgen-dependent SC115 tumors after androgen removal. Nagoshi, J., Nomura, S., Uchida, N., Hirota, S., Ito, A., Nakase, T., Hirakawa, K., Shiozaki, H., Mori, T., Kitamura, Y. Lab. Invest. (1994) [Pubmed]
  22. SPARC-thrombospondin-2-double-null mice exhibit enhanced cutaneous wound healing and increased fibrovascular invasion of subcutaneous polyvinyl alcohol sponges. Puolakkainen, P.A., Bradshaw, A.D., Brekken, R.A., Reed, M.J., Kyriakides, T., Funk, S.E., Gooden, M.D., Vernon, R.B., Wight, T.N., Bornstein, P., Sage, E.H. J. Histochem. Cytochem. (2005) [Pubmed]
  23. SPARC inhibits adipogenesis by its enhancement of beta-catenin signaling. Nie, J., Sage, E.H. J. Biol. Chem. (2009) [Pubmed]
  24. Alterations in the expression of osteonectin, osteopontin and osteocalcin mRNAs during the development of skeletal tissues in vivo. Nakase, T., Takaoka, K., Hirakawa, K., Hirota, S., Takemura, T., Onoue, H., Takebayashi, K., Kitamura, Y., Nomura, S. Bone and mineral. (1994) [Pubmed]
  25. Basic fibroblast growth factor destabilizes osteonectin mRNA in osteoblasts. Delany, A.M., Canalis, E. Am. J. Physiol. (1998) [Pubmed]
  26. Type I collagen-deficient Mov-13 mice do not retain SPARC in the extracellular matrix: implications for fibroblast function. Iruela-Arispe, M.L., Vernon, R.B., Wu, H., Jaenisch, R., Sage, E.H. Dev. Dyn. (1996) [Pubmed]
  27. Matricellular homologs in the foreign body response: hevin suppresses inflammation, but hevin and SPARC together diminish angiogenesis. Barker, T.H., Framson, P., Puolakkainen, P.A., Reed, M., Funk, S.E., Sage, E.H. Am. J. Pathol. (2005) [Pubmed]
  28. Parietal endoderm secreted SPARC promotes early cardiomyogenesis in vitro. Stary, M., Pasteiner, W., Summer, A., Hrdina, A., Eger, A., Weitzer, G. Exp. Cell Res. (2005) [Pubmed]
  29. Expression of mRNA of murine bone-related proteins in ectopic bone induced by murine bone morphogenetic protein-4. Hirota, S., Takaoka, K., Hashimoto, J., Nakase, T., Takemura, T., Morii, E., Fukuyama, A., Morihana, K., Kitamura, Y., Nomura, S. Cell Tissue Res. (1994) [Pubmed]
  30. Development of UV-induced squamous cell carcinomas is suppressed in the absence of SPARC. Aycock, R.L., Bradshaw, A.C., Sage, E.H., Starcher, B. J. Invest. Dermatol. (2004) [Pubmed]
  31. The copper binding domain of SPARC mediates cell survival in vitro via interaction with integrin beta1 and activation of integrin-linked kinase. Weaver, M.S., Workman, G., Sage, E.H. J. Biol. Chem. (2008) [Pubmed]
  32. Close genetic and physical linkage between the murine haemopoietic growth factor genes GM-CSF and Multi-CSF (IL3). Barlow, D.P., Bućan, M., Lehrach, H., Hogan, B.L., Gough, N.M. EMBO J. (1987) [Pubmed]
  33. Expression of genes for non-collagenous proteins during embryonic bone formation. Nomura, S., Wills, A.J., Edwards, D.R., Heath, J.K., Hogan, B.L. Connect. Tissue Res. (1989) [Pubmed]
  34. SPARC inhibits epithelial cell proliferation in part through stimulation of the transforming growth factor-beta-signaling system. Schiemann, B.J., Neil, J.R., Schiemann, W.P. Mol. Biol. Cell (2003) [Pubmed]
  35. In vivo expression of mRNA for the Ca++-binding protein SPARC (osteonectin) revealed by in situ hybridization. Holland, P.W., Harper, S.J., McVey, J.H., Hogan, B.L. J. Cell Biol. (1987) [Pubmed]
  36. Evidence from molecular cloning that SPARC, a major product of mouse embryo parietal endoderm, is related to an endothelial cell 'culture shock' glycoprotein of Mr 43,000. Mason, I.J., Taylor, A., Williams, J.G., Sage, H., Hogan, B.L. EMBO J. (1986) [Pubmed]
 
WikiGenes - Universities