The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Visceral Afferents

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Visceral Afferents

 

Psychiatry related information on Visceral Afferents

  • Both ablation of visceral afferents and blockade of NMDA receptor-mediated glutamatergic transmission by MK-801 result in overconsumption of sucrose solution and other food, apparently by interrupting visceral signals and thus delaying satiation [6].
 

High impact information on Visceral Afferents

 

Chemical compound and disease context of Visceral Afferents

  • Our results suggest that capsaicin-sensitive visceral afferent C-fibers, presumably of the submucosa, play an important role in mediating postoperative ileus [12].
  • Hypoxia, bradykinin, and prostaglandins stimulate ischemically sensitive visceral afferents [13].
  • Clearly the abdominal visceral innervation plays a complex and major role in the emesis produced by these two cytotoxic drugs; circumstantial evidence suggests that 5-HT M-receptors on visceral afferent nerves mediate this action, but other possibly central sites of action of the 5-HT M-receptor antagonists cannot be excluded [14].
  • Intracolonic administration of acetic acid (0.6%) resulted in a significantly increased number of abdominal contractions in response to colorectal balloon distension from 5.8 +/- 1.2 in controls to 16.6 +/- 1.0 in acetic acid-treated animals (P < 0.05), evidencing sensitization of visceral afferent pathways and subsequently visceral hyperalgesia [15].
 

Biological context of Visceral Afferents

 

Anatomical context of Visceral Afferents

 

Associations of Visceral Afferents with chemical compounds

  • These data suggest that H2O2 activates abdominal visceral afferents to reflexly stimulate the cardiovascular system by a mechanism involving hydroxyl radicals [24].
  • Thus, although SP, SOM, and CCK may be contained within a population of sacral visceral afferents, they must be common to afferent systems in other segments as well [25].
  • This study investigated the role played by endogenous nitric oxide in the regulation of esophageal mucosal blood flow at rest and in response to luminal capsaicin, a specific stimulant for visceral afferent nerves, as well as calcitonin gene-related peptide, and the bile salt deoxycholate [26].
  • 2. We measured the depression of BK-induced PE elicited by graded stimulation of spinal visceral afferents with intraperitoneal capsaicin and by intrathecal nicotine in vagus-intact rats and in rats in which specific vagal branches were selectively interrupted [27].
  • The responses of visceral afferent nerves to bradykinin [28].
 

Gene context of Visceral Afferents

  • CONCLUSIONS: These data show that ASIC3 makes a critical positive contribution to mechanosensitivity in three out of four classes of visceral afferents [29].
  • Cholecystokinin and neurotensin are present in fibres innervating the parabrachial nucleus and have previously been shown to modulate the flow of visceral afferent information through the parabrachial nucleus to the cortex in the rat [30].
  • These data demonstrate the presence of TrkA and TrkC in the adult nodose and petrosal ganglia and provide a substrate for the ongoing neurotrophin-induced regulation of these placodally derived visceral afferent neurons [31].
  • The results of this study suggest that group III mGluRs are the primary mGluR subtype expressed in visceral afferent neurons and that these receptors may be involved in afferent central transmission [32].
  • These results suggest that estrogen is released into the PBN by an increase in visceral afferent traffic, however, alterations in estrogen receptor populations in the PBN may contribute to an attenuated physiological role of estrogen in the PBN of male and saline-replaced ovariectomized female rats [33].
 

Analytical, diagnostic and therapeutic context of Visceral Afferents

References

  1. Histamine contributes to ischemia-related activation of cardiac spinal afferents: role of H1 receptors and PKC. Fu, L.W., Schunack, W., Longhurst, J.C. J. Neurophysiol. (2005) [Pubmed]
  2. Upregulation of the expression of vasopressin gene in the paraventricular and supraoptic nuclei of the lithium-induced diabetes insipidus rat. Anai, H., Ueta, Y., Serino, R., Nomura, M., Kabashima, N., Shibuya, I., Takasugi, M., Nakashima, Y., Yamashita, H. Brain Res. (1997) [Pubmed]
  3. Intraperitoneal capsaicin treatment reduces postoperative gastric ileus in awake rats. Zittel, T.T., Meile, T., Jehle, E.C., Becker, H.D. Langenbeck's archives of surgery / Deutsche Gesellschaft für Chirurgie. (2001) [Pubmed]
  4. Vagal afferent fibers and peripheral 5-HT3 receptors mediate cisplatin-induced emesis in dogs. Fukui, H., Yamamoto, M., Sato, S. Jpn. J. Pharmacol. (1992) [Pubmed]
  5. Ischemically sensitive visceral afferents: importance of H+ derived from lactic acid and hypercapnia. Stahl, G.L., Longhurst, J.C. Am. J. Physiol. (1992) [Pubmed]
  6. Additive satiety-delaying effects of capsaicin-induced visceral deafferentation and NMDA receptor blockade suggest separate pathways. Berthoud, H., Patterson, L.M., Morales, S., Zheng, H. Pharmacol. Biochem. Behav. (2000) [Pubmed]
  7. Central target for the behavioural effects of vasopressin neuropeptides. de Wied, D., Gaffori, O., van Ree, J.M., de Jong, W. Nature (1984) [Pubmed]
  8. Long-lasting changes in central nervous system responsivity to colonic distention after stress in rats. Stam, R., Ekkelenkamp, K., Frankhuijzen, A.C., Bruijnzeel, A.W., Akkermans, L.M., Wiegant, V.M. Gastroenterology (2002) [Pubmed]
  9. The magnitude of the central response to esophageal electrical stimulation is intensity dependent. Hollerbach, S., Kamath, M.V., Chen, Y., Fitzpatrick, D., Upton, A.R., Tougas, G. Gastroenterology (1997) [Pubmed]
  10. Intracolonic injection of glycerol: a model for abdominal pain in irritable bowel syndrome? Louvel, D., Delvaux, M., Staumont, G., Camman, F., Fioramonti, J., Bueno, L., Frexinos, J. Gastroenterology (1996) [Pubmed]
  11. A somatostatin analogue inhibits afferent pathways mediating perception of rectal distention. Hasler, W.L., Soudah, H.C., Owyang, C. Gastroenterology (1993) [Pubmed]
  12. Preoperative intraluminal application of capsaicin increases postoperative gastric and colonic motility in rats. Zittel, T.T., Meile, T., Huge, A., Kreis, M.E., Becker, H.D., Jehle, E.C. J. Gastrointest. Surg. (2001) [Pubmed]
  13. Hypoxia, bradykinin, and prostaglandins stimulate ischemically sensitive visceral afferents. Longhurst, J.C., Dittman, L.E. Am. J. Physiol. (1987) [Pubmed]
  14. The role of the abdominal visceral innervation and 5-hydroxytryptamine M-receptors in vomiting induced by the cytotoxic drugs cyclophosphamide and cis-platin in the ferret. Hawthorn, J., Ostler, K.J., Andrews, P.L. Quarterly journal of experimental physiology (Cambridge, England) (1988) [Pubmed]
  15. Calcitonin gene-related peptide in viscerosensitive response to colorectal distension in rats. Plourde, V., St-Pierre, S., Quirion, R. Am. J. Physiol. (1997) [Pubmed]
  16. Blockade of epinephrine priming of the cerebral auditory evoked response by cortical cholinergic deafferentation. Berntson, G.G., Shafi, R., Knox, D., Sarter, M. Neuroscience (2003) [Pubmed]
  17. Immunoneutralization suggests that calcitonin gene related peptide regulates gastric emptying in the rat. Forster, E.R., Dockray, G.J. Neurosci. Lett. (1991) [Pubmed]
  18. Anatomical relationship between vagal afferent fibers and CCK-immunoreactive entero-endocrine cells in the rat small intestinal mucosa. Berthoud, H.R., Patterson, L.M. Acta anatomica. (1996) [Pubmed]
  19. Phox2b controls the development of peripheral chemoreceptors and afferent visceral pathways. Dauger, S., Pattyn, A., Lofaso, F., Gaultier, C., Goridis, C., Gallego, J., Brunet, J.F. Development (2003) [Pubmed]
  20. Somatic and limbic cortex activation in esophageal distention: a functional magnetic resonance imaging study. Binkofski, F., Schnitzler, A., Enck, P., Frieling, T., Posse, S., Seitz, R.J., Freund, H.J. Ann. Neurol. (1998) [Pubmed]
  21. BDNF supports mammalian chemoafferent neurons in vitro and following peripheral target removal in vivo. Hertzberg, T., Fan, G., Finley, J.C., Erickson, J.T., Katz, D.M. Dev. Biol. (1994) [Pubmed]
  22. Sensitization of visceral afferents to bradykinin in rat jejunum in vitro. Brunsden, A.M., Grundy, D. J. Physiol. (Lond.) (1999) [Pubmed]
  23. Capsaicin: actions on nociceptive C-fibres and therapeutic potential. Lynn, B. Pain (1990) [Pubmed]
  24. Hydrogen peroxide-induced cardiovascular reflexes. Role of hydroxyl radicals. Stahl, G.L., Halliwell, B., Longhurst, J.C. Circ. Res. (1992) [Pubmed]
  25. Preferential immunohistochemical localization of vasoactive intestinal polypeptide (VIP) in the sacral spinal cord of the cat: light and electron microscopic observations. Honda, C.N., Réthelyi, M., Petrusz, P. J. Neurosci. (1983) [Pubmed]
  26. Nitric oxide regulates basal but not capsaicin-, CGRP-, or bile salt-stimulated rabbit esophageal mucosal blood flow. McKie, L.D., Bass, B.L., Dunkin, B.J., Harmon, J.W. Ann. Surg. (1995) [Pubmed]
  27. Vagal branches involved in inhibition of bradykinin-induced synovial plasma extravasation by intrathecal nicotine and noxious stimulation in the rat. Miao, F.J., Jänig, W., Levine, J.D. J. Physiol. (Lond.) (1997) [Pubmed]
  28. The responses of visceral afferent nerves to bradykinin. Floyd, K., Hick, V.E., Morrison, J.F. J. Physiol. (Lond.) (1975) [Pubmed]
  29. Different contributions of ASIC channels 1a, 2, and 3 in gastrointestinal mechanosensory function. Page, A.J., Brierley, S.M., Martin, C.M., Price, M.P., Symonds, E., Butler, R., Wemmie, J.A., Blackshaw, L.A. Gut (2005) [Pubmed]
  30. Cholecystokinin and neurotensin inversely modulate excitatory synaptic transmission in the parabrachial nucleus in vitro. Saleh, T.M., Kombian, S.B., Zidichouski, J.A., Pittman, Q.J. Neuroscience (1997) [Pubmed]
  31. Presence and localization of neurotrophin receptor tyrosine kinase (TrkA, TrkB, TrkC) mRNAs in visceral afferent neurons of the nodose and petrosal ganglia. Zhuo, H., Helke, C.J. Brain Res. Mol. Brain Res. (1996) [Pubmed]
  32. Expression of metabotropic glutamate receptors in nodose ganglia and the nucleus of the solitary tract. Hoang, C.J., Hay, M. Am. J. Physiol. Heart Circ. Physiol. (2001) [Pubmed]
  33. 17beta-Estradiol release in the parabrachial nucleus of the rat evoked by visceral afferent activation. Saleh, T.M., Saleh, M.C., Deacon, C.L., Chisholm, A. Mol. Cell. Endocrinol. (2002) [Pubmed]
  34. Analgesia from a peripherally active kappa-opioid receptor agonist in patients with chronic pancreatitis. Eisenach, J.C., Carpenter, R., Curry, R. Pain (2003) [Pubmed]
  35. Effect of initial blood pressure level on cardiovascular reflexes caused by intraperitoneal neurotensin. Rioux, F., Lemieux, M., Lebel, M. Peptides (1990) [Pubmed]
  36. Possible involvement of peripheral 5-HT4 receptors in copper sulfate-induced vomiting in dogs. Fukui, H., Yamamoto, M., Sasaki, S., Sato, S. Eur. J. Pharmacol. (1994) [Pubmed]
  37. Effects of chemical and electrical stimulation of the midbrain on feline T2-T6 spinoreticular and spinal cell activity evoked by cardiopulmonary afferent input. Chandler, M.J., Garrison, D.W., Brennan, T.J., Foreman, R.D. Brain Res. (1989) [Pubmed]
 
WikiGenes - Universities