The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
MeSH Review

Camelids, New World

Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Camelids, New World

  • During hypoxemia, fetal plasma ACTH, adrenal blood flow, and, therefore, delivery of ACTH to the adrenals increased to similar extents in both intact and carotid-denervated fetal llamas [1].
  • In El Dorado County, positive ticks were found at sites where cases of granulocytic ehrlichiosis in a horse and a llama had recently occurred [2].
  • Here we employed the latter approach for improving the affinity of PTH22, a parathyroid hormone (PTH)-derived peptide-specific V(H)H that was isolated from a naive llama phage display library [3].
  • PROCEDURE: 9 llamas received various doses of medetomidine (0.01, 0.02, or 0.03 mg/kg [0.005, 0.009, or 0.014 mg/lb] of body weight, i.m.). Heart and respiratory rates and sedative effects were recorded [4].
  • Foot-and-mouth disease virus in the llama (Lama glama): diagnosis, transmission, and susceptibility [5].

Psychiatry related information on Camelids, New World


High impact information on Camelids, New World

  • However, antibodies from camels and llamas are an important exception to this in that their sera contain, in addition, a unique kind of antibody that is formed by heavy chains only [7].
  • Recently, the high-resolution MPT-bound structure of the Cnx1 G domain (Cnx1G) has been determined (Kuper, J., Llamas, A., Hecht, H. J., Mendel, R. R., and Schwarz, G. (2004) Nature 430, 803-806) [8].
  • Topographic determinants on cytochrome c. I. The complete antigenic structures of rabbit, mouse, and guanaco cytochromes c in rabbits and mice1 [9].
  • These changes occurred in absence of changes in PARP protein degradation, suggesting that the cell death of the brain was not enhanced in the fetal llama during hypoxaemia [10].
  • Bactericidal effects of a fusion protein of llama heavy-chain antibodies coupled to glucose oxidase on oral bacteria [11].

Chemical compound and disease context of Camelids, New World

  • On development of bacteremia, llamas had significant decreases in serum iron (from 118+/-25 to 6+/-4 microg/ml) and increases in serum glucose (from 131+/-5 to 253+/-48 mg/dl) concentrations [12].
  • For each of 3 separate evaluations, 6 fasted llamas (Lama glama) were sedated with xylazine (1.1 mg/kg of body weight, IV) and then 15 minutes later were given normal saline solution (5.0 ml, IV; control values), doxapram (2.2 mg/kg, IV), or 4-amino-pyridine (0.3 mg/kg, IV) and yohimbine (0.125 mg/kg, IV) [13].
  • Despite treatment with ivermectin, fenbendazole, cimetidine, and ceftiofur, the llama developed gastrointestinal ulceration and pulmonary aspergillosis and was euthanatized [14].
  • Unlike the severe hypertension and death that has been reported following dinoprost tromethamine administration in the llama, no adverse reactions were observed in this study following cloprostenol administration [15].
  • Time between birth and first suckling, body weight, rectal temperature, pulse rate, and respiratory rate at birth and serum IgG concentration 24 hours after birth were not different between crias born after fluprostenol treatment and crias born to control alpacas [16].

Biological context of Camelids, New World


Anatomical context of Camelids, New World


Associations of Camelids, New World with chemical compounds

  • The hypothesis that nitric oxide plays a key role in the regulation of adrenal blood flow and plasma concentrations of cortisol and catecholamines under basal and hypoxaemic conditions in the llama fetus was tested [24].
  • In conclusion, these data do not support the hypothesis that the fetal llama brain maintains cerebral hemispheric O2 consumption by increasing cerebral hemispheric O2 extraction [25].
  • Nitric oxide plays a role in the regulation of adrenal blood flow and adrenocorticomedullary functions in the llama fetus [24].
  • 4. In conclusion, alpha-adrenergic and V1-vasopressinergic mechanisms contribute to a basal vasoconstrictor tone in the femoral circulation in the llama fetus [26].
  • As a first step toward this goal, we report here the essentially complete (1)H and (15)N NMR backbone resonance assignments of a llama V(HH) antibody fragment, and an extensive analysis of the structure at higher temperatures [27].

Gene context of Camelids, New World

  • The repertoire of the llama VHHs may be extensive due to the presence of a long CDR3-loop, often constrained by a disulfide bridge and the occurrence of H1 and H2 loop conformations not yet encountered in mice or human VHs [28].
  • Homology analyses of nucleotide and deduced amino acid sequences of llama IL-4, IL-10 and IL-13 and phylogenetic analysis based on their nucleotide sequences indicated the close relationship in these cytokine genes between llama and eutherian mammalian order Artiodactyla (pig, cattle) and Perissodactyla (horse) [29].
  • Carbonic anhydrase (CA) expression was examined in the red cells of two mammals that have adapted to low oxygen stress: the llama, which has adapted to high altitudes, and the beluga (or white) whale, which routinely dives for extended periods [30].
  • Phylogenetic analyses based on nucleic acid sequences showed that llama IL-1alpha, IL-1beta, IL-6 and TNF-alpha were more closely related to those of camel, pig, cattle, sheep and horse than to those of human, dog, cat, mouse and rat [31].
  • The similarity levels of the deduced amino acid sequences of IL-1alpha, IL-1beta, IL-6 and TNF-alpha from llama (camel) to those from other mammalian species, ranged from 60.7% to 87.7%, 52.8% to 75.3%, 41.4% to 98.6%, and 72.9% to 99.6%, respectively [31].

Analytical, diagnostic and therapeutic context of Camelids, New World


  1. Chemoreflex contribution to adrenocortical function during acute hypoxemia in the llama fetus at 0.6 to 0.7 of gestation. Riquelme, R.A., Llanos, J.A., McGarrigle, H.H., Sanhueza, E.M., Hanson, M.A., Giussani, D.A. Endocrinology (1998) [Pubmed]
  2. Ehrlichia phagocytophila genogroup rickettsiae in ixodid ticks from California collected in 1995 and 1996. Barlough, J.E., Madigan, J.E., Kramer, V.L., Clover, J.R., Hui, L.T., Webb, J.P., Vredevoe, L.K. J. Clin. Microbiol. (1997) [Pubmed]
  3. Affinity maturation of a V(H)H by mutational hotspot randomization. Yau, K.Y., Dubuc, G., Li, S., Hirama, T., Mackenzie, C.R., Jermutus, L., Hall, J.C., Tanha, J. J. Immunol. Methods (2005) [Pubmed]
  4. Sedative effects of medetomidine and its reversal by atipamezole in llamas. Waldridge, B.M., Lin, H.C., DeGraves, F.J., Pugh, D.G. J. Am. Vet. Med. Assoc. (1997) [Pubmed]
  5. Foot-and-mouth disease virus in the llama (Lama glama): diagnosis, transmission, and susceptibility. Lubroth, J., Yedloutschnig, R.J., Culhane, V.K., Mikiciuk, P.E. J. Vet. Diagn. Invest. (1990) [Pubmed]
  6. Pituitary response to repeated copulation and/or gonadotropin-releasing hormone administration in llamas and alpacas. Bravo, P.W., Stabenfeldt, G.H., Fowler, M.E., Lasley, B.L. Biol. Reprod. (1992) [Pubmed]
  7. Recognition of antigens by single-domain antibody fragments: the superfluous luxury of paired domains. Muyldermans, S., Cambillau, C., Wyns, L. Trends Biochem. Sci. (2001) [Pubmed]
  8. Synthesis of adenylated molybdopterin: an essential step for molybdenum insertion. Llamas, A., Mendel, R.R., Schwarz, G. J. Biol. Chem. (2004) [Pubmed]
  9. Topographic determinants on cytochrome c. I. The complete antigenic structures of rabbit, mouse, and guanaco cytochromes c in rabbits and mice1. Urbanski, G.J., Margoliash, E. J. Immunol. (1977) [Pubmed]
  10. Fetal brain hypometabolism during prolonged hypoxaemia in the llama. Ebensperger, G., Ebensperger, R., Herrera, E.A., Riquelme, R.A., Sanhueza, E.M., Lesage, F., Marengo, J.J., Tejo, R.I., Llanos, A.J., Reyes, R.V. J. Physiol. (Lond.) (2005) [Pubmed]
  11. Bactericidal effects of a fusion protein of llama heavy-chain antibodies coupled to glucose oxidase on oral bacteria. Szynol, A., de Soet, J.J., Sieben-van Tuyl, E., Bos, J.W., Frenken, L.G. Antimicrob. Agents Chemother. (2004) [Pubmed]
  12. Pathogenesis of Streptococcus zooepidemicus infection after intratracheal inoculation in llamas. Cebra, C.K., Heidel, J.R., Cebra, M.L., Tornquist, S.J., Smith, B.B. Am. J. Vet. Res. (2000) [Pubmed]
  13. Reversal of xylazine-induced sedation in llamas, using doxapram or 4-aminopyridine and yohimbine. Riebold, T.W., Kaneps, A.J., Schmotzer, W.B. J. Am. Vet. Med. Assoc. (1986) [Pubmed]
  14. Gastrointestinal ulceration and pulmonary aspergillosis in a llama treated for parelaphostrongylosis. Quist, C.F., Dutton, D.M., Schneider, D.A., Prestwood, A.K. J. Am. Vet. Med. Assoc. (1998) [Pubmed]
  15. Use of cloprostenol as an abortifacient in the llama (Lama glama). Smith, B.B., Timm, K.I., Reed, P.J., Christensen, M. Theriogenology (2000) [Pubmed]
  16. Induction of parturition in alpacas and subsequent survival of neonates. Bravo, P.W., Bazan, P.J., Troedsson, M.H., Villalta, P.R., Garnica, J.P. J. Am. Vet. Med. Assoc. (1996) [Pubmed]
  17. Effects of lactational and reproductive status on ovarian follicular waves in llamas (Lama glama). Adams, G.P., Sumar, J., Ginther, O.J. J. Reprod. Fertil. (1990) [Pubmed]
  18. Single intravenous and multiple dose pharmacokinetics of gentamicin in healthy llamas. Lackey, M.N., Belknap, E.B., Greco, D.S., Fettman, M.J. Am. J. Vet. Res. (1996) [Pubmed]
  19. Plasma progesterone concentrations in pregnant and non-pregnant llamas (Lama glama). Adam, C.L., Moir, C.E., Shiach, P. Vet. Rec. (1989) [Pubmed]
  20. In vitro investigation of the effects of nonsteroidal anti-inflammatory drugs, prostaglandin E2, and prostaglandin F2alpha on contractile activity of the third compartment of the stomach of llamas. Van Hoogmoed, L.M., Drake, C.M., Snyder, J.R. Am. J. Vet. Res. (2004) [Pubmed]
  21. Characterization of the humoral immune response in alpacas (Lama pacos) experimentally infected with Fasciola hepatica against cysteine proteinases Fas1 and Fas2 and histopathological findings. Timoteo, O., Maco, V., Maco, V., Neyra, V., Yi, P.J., Leguía, G., Espinoza, J.R. Vet. Immunol. Immunopathol. (2005) [Pubmed]
  22. Microanatomic features of pancreatic islets and immunolocalization of glucose transporters in tissues of llamas and alpacas. Cebra, C.K., Bildfell, R.J., Fischer, K.A. Am. J. Vet. Res. (2006) [Pubmed]
  23. Nitric oxide synthase activity in brain tissues from llama fetuses submitted to hypoxemia. Galleguillos, M., Valenzuela, M.A., Riquelme, R., Sanhueza, E., Sánchez, G., Figueroa, J.P., Llanos, A.J. Comp. Biochem. Physiol., Part A Mol. Integr. Physiol. (2001) [Pubmed]
  24. Nitric oxide plays a role in the regulation of adrenal blood flow and adrenocorticomedullary functions in the llama fetus. Riquelme, R.A., Sánchez, G., Liberona, L., Sanhueza, E.M., Giussani, D.A., Blanco, C.E., Hanson, M.A., Llanos, A.J. J. Physiol. (Lond.) (2002) [Pubmed]
  25. Regional brain blood flow and cerebral hemispheric oxygen consumption during acute hypoxaemia in the llama fetus. Llanos, A.J., Riquelme, R.A., Sanhueza, E.M., Herrera, E., Cabello, G., Giussani, D.A., Parer, J.T. J. Physiol. (Lond.) (2002) [Pubmed]
  26. Adrenergic and vasopressinergic contributions to the cardiovascular response to acute hypoxaemia in the llama fetus. Giussani, D.A., Riquelme, R.A., Sanhueza, E.M., Hanson, M.A., Blanco, C.E., Llanos, A.J. J. Physiol. (Lond.) (1999) [Pubmed]
  27. Thermal unfolding of a llama antibody fragment: a two-state reversible process. Pérez, J.M., Renisio, J.G., Prompers, J.J., van Platerink, C.J., Cambillau, C., Darbon, H., Frenken, L.G. Biochemistry (2001) [Pubmed]
  28. Comparison of llama VH sequences from conventional and heavy chain antibodies. Vu, K.B., Ghahroudi, M.A., Wyns, L., Muyldermans, S. Mol. Immunol. (1997) [Pubmed]
  29. Cloning and sequence analysis of llama (lama glama) Th2 (IL-4, IL-10 and IL-13) cytokines. Odbileg, R., Lee, S.I., Ohashi, K., Onuma, M. Vet. Immunol. Immunopathol. (2005) [Pubmed]
  30. Absence or reduction of carbonic anhydrase II in the red cells of the beluga whale and llama: implications for adaptation to hypoxia. Yang, H., Hewett-Emmett, D., Tashian, R.E. Biochem. Genet. (2000) [Pubmed]
  31. Molecular cloning and phylogenetic analysis of inflammatory cytokines of Camelidae (llama and camel). Odbileg, R., Konnai, S., Ohashi, K., Onuma, M. J. Vet. Med. Sci. (2005) [Pubmed]
  32. Macrococcus brunensis sp. nov., Macrococcus hajekii sp. nov. and Macrococcus lamae sp. nov., from the skin of llamas. Mannerová, S., Pantůcek, R., Doskar, J., Svec, P., Snauwaert, C., Vancanneyt, M., Swings, J., Sedlácek, I. Int. J. Syst. Evol. Microbiol. (2003) [Pubmed]
  33. Pharmacokinetics after intravenous, subcutaneous, and oral administration of enrofloxacin to alpacas. Gandolf, A.R., Papich, M.G., Bringardner, A.B., Atkinson, M.W. Am. J. Vet. Res. (2005) [Pubmed]
  34. Plasma progesterone in alpaca (Lama pacos) during pregnancy, parturition and early postpartum. Raggi, L.A., Ferrando, G., Parraguez, V.H., MacNiven, V., Urquieta, B. Anim. Reprod. Sci. (1999) [Pubmed]
  35. Assessment of the effects of exogenous long-acting insulin on glucose tolerance in alpacas. Ueda, J., Cebra, C.K., Tornquist, S.J. Am. J. Vet. Res. (2004) [Pubmed]
  36. Immobilization of guanacos by use of tiletamine/zolazepam. Sarno, R.J., Hunter, R.L., Franklin, W.L. J. Am. Vet. Med. Assoc. (1996) [Pubmed]
WikiGenes - Universities