The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)



Gene Review

PPBP  -  pro-platelet basic protein (chemokine (C-X...

Homo sapiens

Synonyms: B-TG1, Beta-TG, C-X-C motif chemokine 7, CTAP-III, CTAP3, ...
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of PPBP


Psychiatry related information on PPBP


High impact information on PPBP


Chemical compound and disease context of PPBP


Biological context of PPBP

  • Markers for association mapping were chosen after determining patterns of linkage disequilibrium across the surrounding region of chromosome 4q, a 550-kb segment containing nine genes, extending from AFP to PPBP [19].
  • NAP-2-induced elastase release and a rise in cytosolic free Ca2+ at concentrations between 0.3 and 100 nM, and neutrophil chemotaxis at concentrations between 0.03 and 10 nM [20].
  • Superoxide production, a measure of the respiratory burst, was obtained with increasing concentrations of IL-8 with maximum effects at 25 to 50 nM, but no response was observed upon challenge with GRO alpha or NAP-2 up to 1000 nM [21].
  • Instead of inducing cell activation, continuous accumulation of the chemokine in the surroundings of the processing cells results in the down-regulation of specific surface-expressed NAP-2 binding sites and in the desensitization of chemokine-induced PMN degranulation [22].
  • Further investigations of this type demonstrated that a chimeric PF4 protein (AELR/PF4) in which PF4's N-terminus was replaced with the first four amino acids of NAP-2 was also a potent inhibitor of megakaryocytopoiesis [23].

Anatomical context of PPBP

  • It could be generated from PBP and/or CTAP-III released from activated platelets and lead to the accumulation of neutrophils in platelet aggregates [20].
  • NAP-2 was generated whenever monocytes and platelet release supernatant were present [24].
  • Monocytes alone did not yield NAP-2 and no neutrophil-activating peptide was generated by lymphocytes [24].
  • The inhibitory effects of NAP-2 and MIP-1 alpha could not be overcome by adding physiologically relevant amounts of recombinant human megakaryocyte growth and development factor (MGDR) (50 ng/mL) to the cultures [23].
  • Here we show for the first time that activated human skin mast cells (MCs) convert CTAP-III into biologically active NAP-2 through proteolytic cleavage by released chymase [25].

Associations of PPBP with chemical compounds

  • The monocyte-conditioned medium was found to cleave purified CTAP-III into NAP-2 through proteinases that were highly sensitive to PMSF, moderately sensitive to leupeptin and insensitive to EDTA [24].
  • Competitive radioimmunoassay demonstrated a low but significant immunologic cross-reactivity between human and porcine platelet factor 4, and between porcine platelet basic protein and a group of human secreted platelet proteins that bind to heparin with low affinity (beta-thromboglobulin [beta TG] and low affinity platelet factor 4) [26].
  • 0. The amino acid composition of porcine platelet basic protein resembled that of human low affinity platelet factor 4 (LA-PF4), except that the porcine protein did not contain tyrosine [26].
  • Because cleavage of the CTAP-III-unrelated substrate substance P was also affected by PF-4, our results suggest a regulatory role for PF-4 not only in NAP-2 generation but also in neutrophil- and MC-mediated processing of other physiologically relevant inflammatory mediators [25].
  • The neutrophil-activating proteins interleukin 8 and beta-thromboglobulin: in vitro and in vivo comparison of NH2-terminally processed forms [27].

Physical interactions of PPBP

  • IL-8 and NAP-2 differ in their capacities to bind and chemoattract 293 cells transfected with either IL-8 receptor type A or type B [28].
  • Although two IL-8R types are expressed by PMN, only CXCR2 binds NAP-2 and IL-8 with equally high affinity [29].

Enzymatic interactions of PPBP

  • From several PMN-derived proteases tested, only cathepsin G had the capacity to cleave CTAP-III into NAP-2 with high specificity and in a relatively short period of time (30 min) [30].

Regulatory relationships of PPBP


Other interactions of PPBP


Analytical, diagnostic and therapeutic context of PPBP


  1. Presence of autoantibodies to interleukin-8 or neutrophil-activating peptide-2 in patients with heparin-associated thrombocytopenia. Amiral, J., Marfaing-Koka, A., Wolf, M., Alessi, M.C., Tardy, B., Boyer-Neumann, C., Vissac, A.M., Fressinaud, E., Poncz, M., Meyer, D. Blood (1996) [Pubmed]
  2. The melanoma growth stimulatory activity receptor consists of two proteins. Ligand binding results in enhanced tyrosine phosphorylation. Cheng, Q.C., Han, J.H., Thomas, H.G., Balentien, E., Richmond, A. J. Immunol. (1992) [Pubmed]
  3. Beta thromboglobulin and platelet factor 4 in bronchoalveolar lavage fluid of patients with systemic sclerosis. Kowal-Bielecka, O., Kowal, K., Lewszuk, A., Bodzenta-Lukaszyk, A., Walecki, J., Sierakowski, S. Ann. Rheum. Dis. (2005) [Pubmed]
  4. A novel cleavage product of beta-thromboglobulin formed in cultures of stimulated mononuclear cells activates human neutrophils. Walz, A., Baggiolini, M. Biochem. Biophys. Res. Commun. (1989) [Pubmed]
  5. Platelet activation and secretion associated with emotional stress. Levine, S.P., Towell, B.L., Suarez, A.M., Knieriem, L.K., Harris, M.M., George, J.N. Circulation (1985) [Pubmed]
  6. Decreased brain-derived neurotrophic factor (BDNF)- and beta-thromboglobulin (beta-TG)- blood levels in Alzheimer's disease. Laske, C., Stransky, E., Leyhe, T., Eschweiler, G.W., Schott, K., Langer, H., Gawaz, M. Thromb. Haemost. (2006) [Pubmed]
  7. Impact of smoking, physical training and weight reduction on FVII, PAI-1 and hemostatic markers in sedentary men. Gris, J.C., Schved, J.F., Feugeas, O., Aguilar-Martinez, P., Arnaud, A., Sanchez, N., Sarlat, C. Thromb. Haemost. (1990) [Pubmed]
  8. Occurrence of psychosis in patients with epilepsy randomized to tiagabine or placebo treatment. Sackellares, J.C., Krauss, G., Sommerville, K.W., Deaton, R. Epilepsia (2002) [Pubmed]
  9. Beta thromboglobulin and alcohol consumption. Gravett, P.J., Milligan, S.J. Journal of the Royal Army Medical Corps. (1984) [Pubmed]
  10. Identification of BTG2, an antiproliferative p53-dependent component of the DNA damage cellular response pathway. Rouault, J.P., Falette, N., Guéhenneux, F., Guillot, C., Rimokh, R., Wang, Q., Berthet, C., Moyret-Lalle, C., Savatier, P., Pain, B., Shaw, P., Berger, R., Samarut, J., Magaud, J.P., Ozturk, M., Samarut, C., Puisieux, A. Nat. Genet. (1996) [Pubmed]
  11. A prospective study of platelets and plasma proteolytic systems during the early stages of Rocky Mountain spotted fever. Rao, A.K., Schapira, M., Clements, M.L., Niewiarowski, S., Budzynski, A.Z., Schmaier, A.H., Harpel, P.C., Blackwelder, W.C., Scherrer, J.R., Sobel, E. N. Engl. J. Med. (1988) [Pubmed]
  12. Transformation by Rous sarcoma virus induces a novel gene with homology to a mitogenic platelet protein. Sugano, S., Stoeckle, M.Y., Hanafusa, H. Cell (1987) [Pubmed]
  13. A significant part of macrophage-derived growth factor consists of at least two forms of PDGF. Shimokado, K., Raines, E.W., Madtes, D.K., Barrett, T.B., Benditt, E.P., Ross, R. Cell (1985) [Pubmed]
  14. Platelet activation in muscle contraction headache and migraine. Takeshima, T., Shimomura, T., Takahashi, K. Cephalalgia : an international journal of headache. (1987) [Pubmed]
  15. Secreted platelet proteins with antiheparin and mitogenic activities in chronic renal failure. Guzzo, J., Niewiarowski, S., Musial, J., Bastl, C., Grossman, R.A., Rao, A.K., Berman, I., Paul, D. J. Lab. Clin. Med. (1980) [Pubmed]
  16. beta-thromboglobulin (beta-TG) and platelet factor 4 (PF4) in obstetrical cases. Arocha-Piñango, C.L., Ojeda, A., López, G., García, L., Linares, J. Acta obstetricia et gynecologica Scandinavica. (1985) [Pubmed]
  17. Beta-thromboglobulin and platelet factor 4 in polycythemia patients treated by ticlopidine. Najean, Y., Poirier, O. Acta Haematol. (1984) [Pubmed]
  18. Platelet GP IIIa PlA and GP Ib variable number tandem repeat polymorphisms and markers of platelet activation in acute stroke. Carter, A.M., Catto, A.J., Bamford, J.M., Grant, P.J. Arterioscler. Thromb. Vasc. Biol. (1998) [Pubmed]
  19. Haplotype mapping of the bronchiolitis susceptibility locus near IL8. Hull, J., Rowlands, K., Lockhart, E., Sharland, M., Moore, C., Hanchard, N., Kwiatkowski, D.P. Hum. Genet. (2004) [Pubmed]
  20. Effects of the neutrophil-activating peptide NAP-2, platelet basic protein, connective tissue-activating peptide III and platelet factor 4 on human neutrophils. Walz, A., Dewald, B., von Tscharner, V., Baggiolini, M. J. Exp. Med. (1989) [Pubmed]
  21. Different functions for the interleukin 8 receptors (IL-8R) of human neutrophil leukocytes: NADPH oxidase and phospholipase D are activated through IL-8R1 but not IL-8R2. Jones, S.A., Wolf, M., Qin, S., Mackay, C.R., Baggiolini, M. Proc. Natl. Acad. Sci. U.S.A. (1996) [Pubmed]
  22. Down-regulation of neutrophil functions by the ELR(+) CXC chemokine platelet basic protein. Ehlert, J.E., Ludwig, A., Grimm, T.A., Lindner, B., Flad, H.D., Brandt, E. Blood (2000) [Pubmed]
  23. Chemokine regulation of human megakaryocytopoiesis. Gewirtz, A.M., Zhang, J., Ratajczak, J., Ratajczak, M., Park, K.S., Li, C., Yan, Z., Poncz, M. Blood (1995) [Pubmed]
  24. Generation of the neutrophil-activating peptide NAP-2 from platelet basic protein or connective tissue-activating peptide III through monocyte proteases. Walz, A., Baggiolini, M. J. Exp. Med. (1990) [Pubmed]
  25. Mast cells and neutrophils proteolytically activate chemokine precursor CTAP-III and are subject to counterregulation by PF-4 through inhibition of chymase and cathepsin G. Schiemann, F., Grimm, T.A., Hoch, J., Gross, R., Lindner, B., Petersen, F., Bulfone-Paus, S., Brandt, E. Blood (2006) [Pubmed]
  26. Purification of two heparin-binding proteins from porcine platelets and their homology with human secreted platelet proteins. Rucinski, B., Poggi, A., James, P., Holt, J.C., Niewiarowski, S. Blood (1983) [Pubmed]
  27. The neutrophil-activating proteins interleukin 8 and beta-thromboglobulin: in vitro and in vivo comparison of NH2-terminally processed forms. Van Damme, J., Rampart, M., Conings, R., Decock, B., Van Osselaer, N., Willems, J., Billiau, A. Eur. J. Immunol. (1990) [Pubmed]
  28. IL-8 and NAP-2 differ in their capacities to bind and chemoattract 293 cells transfected with either IL-8 receptor type A or type B. Ben-Baruch, A., Bengali, K., Tani, K., Xu, L., Oppenheim, J.J., Wang, J.M. Cytokine (1997) [Pubmed]
  29. The differential ability of IL-8 and neutrophil-activating peptide-2 to induce attenuation of chemotaxis is mediated by their divergent capabilities to phosphorylate CXCR2 (IL-8 receptor B). Ben-Baruch, A., Grimm, M., Bengali, K., Evans, G.A., Chertov, O., Wang, J.M., Howard, O.M., Mukaida, N., Matsushima, K., Oppenheim, J.J. J. Immunol. (1997) [Pubmed]
  30. Neutrophils can generate their activator neutrophil-activating peptide 2 by proteolytic cleavage of platelet-derived connective tissue-activating peptide III. Brandt, E., Van Damme, J., Flad, H.D. Cytokine (1991) [Pubmed]
  31. The CXC-chemokine neutrophil-activating peptide-2 induces two distinct optima of neutrophil chemotaxis by differential interaction with interleukin-8 receptors CXCR-1 and CXCR-2. Ludwig, A., Petersen, F., Zahn, S., Götze, O., Schröder, J.M., Flad, H.D., Brandt, E. Blood (1997) [Pubmed]
  32. Structure and bioactivity of recombinant human CTAP-III and NAP-2. Proudfoot, A.E., Peitsch, M.C., Power, C.A., Allet, B., Mermod, J.J., Bacon, K., Wells, T.N. J. Protein Chem. (1997) [Pubmed]
  33. Differential and additive effects of platelet-derived chemokines on monocyte arrest on inflamed endothelium under flow conditions. Baltus, T., von Hundelshausen, P., Mause, S.F., Buhre, W., Rossaint, R., Weber, C. J. Leukoc. Biol. (2005) [Pubmed]
  34. Lipopolysaccharide-stimulated human monocytes secrete, apart from neutrophil-activating peptide 1/interleukin 8, a second neutrophil-activating protein. NH2-terminal amino acid sequence identity with melanoma growth stimulatory activity. Schröder, J.M., Persoon, N.L., Christophers, E. J. Exp. Med. (1990) [Pubmed]
  35. High- and low-affinity binding of GRO alpha and neutrophil-activating peptide 2 to interleukin 8 receptors on human neutrophils. Schumacher, C., Clark-Lewis, I., Baggiolini, M., Moser, B. Proc. Natl. Acad. Sci. U.S.A. (1992) [Pubmed]
  36. RANTES- and interleukin-8-induced responses in normal human eosinophils: effects of priming with interleukin-5. Schweizer, R.C., Welmers, B.A., Raaijmakers, J.A., Zanen, P., Lammers, J.W., Koenderman, L. Blood (1994) [Pubmed]
  37. The N terminus of interleukin-8 (IL-8) receptor confers high affinity binding to human IL-8. Suzuki, H., Prado, G.N., Wilkinson, N., Navarro, J. J. Biol. Chem. (1994) [Pubmed]
  38. Increased microvascular permeability in vivo in response to intradermal injection of neutrophil-activating protein (NAP-2) in rabbit skin. Van Osselaer, N., Van Damme, J., Rampart, M., Herman, A.G. Am. J. Pathol. (1991) [Pubmed]
  39. Specific CXC but not CC chemokines cause elevated monocyte migration in COPD: a role for CXCR2. Traves, S.L., Smith, S.J., Barnes, P.J., Donnelly, L.E. J. Leukoc. Biol. (2004) [Pubmed]
  40. Immunological localisation of beta-thromboglobulin and platelet factor 4 in human megakaryocytes and platelets. McLaren, K.M., Pepper, D.S. J. Clin. Pathol. (1982) [Pubmed]
WikiGenes - Universities