The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
MeSH Review


Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Gingiva


High impact information on Gingiva


Chemical compound and disease context of Gingiva


Biological context of Gingiva


Anatomical context of Gingiva


Associations of Gingiva with chemical compounds


Gene context of Gingiva

  • By RT-PCR, we found CTSC is also expressed in epithelial regions commonly affected by PLS, including the palms, soles, knees, and oral keratinised gingiva [28].
  • We have also isolated MNC from patients with CP and those with healthy gingiva and show that MNC from CP subjects have a reduced capacity to upregulate TLR2, TLR4, and interleukin-1beta in response to endotoxin [29].
  • Interleukin-1 (IL-1) may play a critical role in immune and inflammatory responses in inflamed gingiva, and it is synthesized by a wide variety of host cells [30].
  • Since there was a marked difference of S100A4 expression between PDL and gingiva, we propose that S100A4 could be a useful marker for distinguishing cells from these two tissues [31].
  • As human gingival fibroblasts (HGF) can be potential targets for TNF-alpha in inflamed gingiva, we hypothesized that HGF partially modulate the cellular responses to TNF-alpha by regulating their own TNFR [32].

Analytical, diagnostic and therapeutic context of Gingiva


  1. Metabolism of phenytoin by the gingiva of normal humans: the possible role of reactive metabolites of phenytoin in the initiation of gingival hyperplasia. Zhou, L.X., Pihlstrom, B., Hardwick, J.P., Park, S.S., Wrighton, S.A., Holtzman, J.L. Clin. Pharmacol. Ther. (1996) [Pubmed]
  2. Biosynthesis of prostaglandin E2 and F2 alpha in gingiva of patients with chronic periodontitis. Elattar, T.M., Lin, H.S. J. Dent. Res. (1981) [Pubmed]
  3. A new locus for hereditary gingival fibromatosis (GINGF2) maps to 5q13-q22. Xiao, S., Bu, L., Zhu, L., Zheng, G., Yang, M., Qian, M., Hu, L., Liu, J., Zhao, G., Kong, X. Genomics (2001) [Pubmed]
  4. Prostaglandin as a mediator of bone resorption induced by experimental tooth movement in rats. Yamasaki, K., Miura, F., Suda, T. J. Dent. Res. (1980) [Pubmed]
  5. Differential uPA Expression by TGF-{beta}1 in Gingival Fibroblasts. Smith, P.C., Martínez, J. J. Dent. Res. (2006) [Pubmed]
  6. Production of a monoclonal antibody to an attachment protein derived from human cementum. Arzate, H., Olson, S.W., Page, R.C., Gown, A.M., Narayanan, A.S. FASEB J. (1992) [Pubmed]
  7. Expression of keratin K2e in cutaneous and oral lesions: association with keratinocyte activation, proliferation, and keratinization. Bloor, B.K., Tidman, N., Leigh, I.M., Odell, E., Dogan, B., Wollina, U., Ghali, L., Waseem, A. Am. J. Pathol. (2003) [Pubmed]
  8. Cytokine profile and ultrastructure of intraepithelial gamma delta T cells in chronically inflamed human gingiva suggest a cytotoxic effector function. Lundqvist, C., Baranov, V., Teglund, S., Hammarström, S., Hammarström, M.L. J. Immunol. (1994) [Pubmed]
  9. MDR1 gene polymorphisms and risk of gingival hyperplasia induced by calcium antagonists. Meisel, P., Giebel, J., Kunert-Keil, C., Dazert, P., Kroemer, H.K., Kocher, T. Clin. Pharmacol. Ther. (2006) [Pubmed]
  10. Possible role of stromal-cell-derived factor-1/CXCR4 signaling on lymph node metastasis of oral squamous cell carcinoma. Uchida, D., Begum, N.M., Almofti, A., Nakashiro, K., Kawamata, H., Tateishi, Y., Hamakawa, H., Yoshida, H., Sato, M. Exp. Cell Res. (2003) [Pubmed]
  11. Kaposi's sarcoma in cyclosporine-induced gingival hyperplasia. Qunibi, W.Y., Akhtar, M., Ginn, E., Smith, P. Am. J. Kidney Dis. (1988) [Pubmed]
  12. Tumor necrosis factor-alpha and its receptors, p55 and p75, in gingiva of adult periodontitis. Tervahartiala, T., Koski, H., Xu, J.W., Häyrinen-Immonen, R., Hietanen, J., Sorsa, T., Konttinen, Y.T. J. Dent. Res. (2001) [Pubmed]
  13. Bacteroides-specific IgG and IgA subclass antibody-secreting cells isolated from chronically inflamed gingival tissues. Ogawa, T., McGhee, M.L., Moldoveanu, Z., Hamada, S., Mestecky, J., McGhee, J.R., Kiyono, H. Clin. Exp. Immunol. (1989) [Pubmed]
  14. Profile of autoantibody to basement membrane zone proteins in patients with mucous membrane pemphigoid: long-term follow up and influence of therapy. Yeh, S.W., Usman, A.Q., Ahmed, A.R. Clin. Immunol. (2004) [Pubmed]
  15. Mannosidosis: isolation and comparison of mannose-containing oligosaccharides from gingiva and urine. Daniel, P.F., Defeudis, D.F., Lott, I.T. Eur. J. Biochem. (1981) [Pubmed]
  16. Human junctional epithelium: demonstration of a new marker, its growth in vitro and characterization by lectin reactivity and keratin expression. Bampton, J.L., Shirlaw, P.J., Topley, S., Weller, P., Wilton, J.M. J. Invest. Dermatol. (1991) [Pubmed]
  17. In situ detection of apoptosis at sites of chronic bacterially induced inflammation in human gingiva. Tonetti, M.S., Cortellini, D., Lang, N.P. Infect. Immun. (1998) [Pubmed]
  18. Differences between tooth stimulation and capsaicin-induced neurogenic vasodilatation in human gingiva. Kemppainen, P., Avellan, N.L., Handwerker, H.O., Forster, C. J. Dent. Res. (2003) [Pubmed]
  19. Confirmation that neither phenotype nor hydroxylation of collagen is altered in overgrown gingiva from diphenylhydantoin-treated patients. Schneir, M., Ogata, S., Fine, A. J. Dent. Res. (1978) [Pubmed]
  20. Estrogen suppression induces papillary gingival overgrowth in pregnant baboons. Reynolds, M.A., Aberdeen, G.W., Pepe, G.J., Sauk, J.J., Albrecht, E.D. J. Periodontol. (2004) [Pubmed]
  21. Initial characterization of a neutral metalloproteinase, active on native 3/4-collagen fragments, synthesized by ROS 17/2.8 osteoblastic cells, periodontal fibroblasts, and identified in gingival crevicular fluid. Overall, C.M., Sodek, J. J. Dent. Res. (1987) [Pubmed]
  22. Protection of gingival epithelium against complement-mediated damage by strong expression of the membrane attack complex inhibitor protectin (CD59). Rautemaa, R., Meri, S. J. Dent. Res. (1996) [Pubmed]
  23. Effect of ethanol intake on cellular regulation of testosterone-5 alpha-reductase in rat oral tissues. Vittek, J., Gordon, G.G., Southren, A.L., Rappaport, S.C., Munnangi, P.R., Lieber, C.S. J. Pharmacol. Exp. Ther. (1981) [Pubmed]
  24. Identification of the Fas antigen in human gingiva. Yoshioka, C., Muraki, Y., Fukuda, J., Haneji, T., Kobayashi, N. J. Dent. Res. (1996) [Pubmed]
  25. Specific estrogen receptors in human gingiva. Vittek, J., Hernandez, M.R., Wenk, E.J., Rappaport, S.C., Southren, A.L. J. Clin. Endocrinol. Metab. (1982) [Pubmed]
  26. Specific 5 alpha-dihydrotestosterone receptors in human gingiva. Southren, A.L., Rappaport, S.C., Gordon, G.G., Vittek, J. J. Clin. Endocrinol. Metab. (1978) [Pubmed]
  27. Lack of sex differences in modulation of experimental intraoral pain by diffuse noxious inhibitory controls (DNIC). Baad-Hansen, L., Poulsen, H.F., Jensen, H.M., Svensson, P. Pain (2005) [Pubmed]
  28. Mutations of the cathepsin C gene are responsible for Papillon-Lefèvre syndrome. Hart, T.C., Hart, P.S., Bowden, D.W., Michalec, M.D., Callison, S.A., Walker, S.J., Zhang, Y., Firatli, E. J. Med. Genet. (1999) [Pubmed]
  29. Upregulation of immunoregulatory Src homology 2 molecule containing inositol phosphatase and mononuclear cell hyporesponsiveness in oral mucosa during chronic periodontitis. Muthukuru, M., Cutler, C.W. Infect. Immun. (2006) [Pubmed]
  30. Intracellular interleukin-1 alpha production in human gingival fibroblasts is differentially regulated by various cytokines. Kobayashi, M., Okada, N., Okamatsu, Y., Mugikura, K., Nishihara, T., Hanazawa, S., Kitano, S., Hasegawa, K. J. Dent. Res. (1999) [Pubmed]
  31. cDNA cloning of S100 calcium-binding proteins from bovine periodontal ligament and their expression in oral tissues. Duarte, W.R., Kasugai, S., Iimura, T., Oida, S., Takenaga, K., Ohya, K., Ishikawa, I. J. Dent. Res. (1998) [Pubmed]
  32. Tumor necrosis factor-alpha (TNF-alpha)-induced and interleukin-1 beta (IL-1 beta)-induced shedding of TNF receptors from gingival fibroblasts. Ohe, H., Takashiba, S., Naruishi, K., Chou, H.H., Yamada, H., Nishimura, F., Arai, H., Murayama, Y. J. Interferon Cytokine Res. (2000) [Pubmed]
  33. The effects of different levels of dietary sucrose on root caries subsequent to gingivectomy in conventional rats infected with Actinomyces viscosus M-100. Firestone, A.R., Graves, C.N., Feagin, F.F. J. Dent. Res. (1988) [Pubmed]
  34. Light and transmission electron microscopy of the intact interfaces between non-submerged titanium-coated epoxy resin implants and bone or gingiva. Listgarten, M.A., Buser, D., Steinemann, S.G., Donath, K., Lang, N.P., Weber, H.P. J. Dent. Res. (1992) [Pubmed]
  35. Immunocytochemical localization of substance P neurokinin-1 receptors in rat gingival tissue. Kido, M.A., Yamaza, T., Goto, T., Tanaka, T. Cell Tissue Res. (1999) [Pubmed]
  36. Serotonin in rat oral tissues: role of 5-HT1 receptors in sympathetic vascular control. Kerezoudis, N.P., Nomikos, G.G., Olgart, L.M., Svensson, T.H. Eur. J. Pharmacol. (1995) [Pubmed]
  37. Differential neural activation of vascular alpha-adrenoceptors in oral tissues of cats. Koss, M.C. Eur. J. Pharmacol. (2002) [Pubmed]
WikiGenes - Universities