The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 

Links

 

Gene Review

Hk1  -  hexokinase 1

Rattus norvegicus

Synonyms: Brain form hexokinase, HK I, Hexokinase type I, Hexokinase-1
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Hk1

 

Psychiatry related information on Hk1

  • To understand this mechanism, it was hypothesized that the enzymes involved in the metabolism of glucose, viz. hexokinase and glucose-6-phosphatase, are affected by REM sleep deprivation [6].
  • Hexokinase showed no variation with increasing periods of food deprivation [7].
  • 5. Minimal nonsignificant changes were noted in the hexokinase activity of the hearts of all T groups (P greater than or equal to 0.05) [8].
 

High impact information on Hk1

 

Chemical compound and disease context of Hk1

 

Biological context of Hk1

 

Anatomical context of Hk1

 

Associations of Hk1 with chemical compounds

 

Physical interactions of Hk1

  • (v) Hexokinase was furthermore used as a tool to isolate the contact site forming complex of outer membrane VDAC and inner membrane ANT from Triton-dissolved membranes [24].
  • Despite normal to elevated hexokinase and glucokinase activities in the islets of these glucose-intolerant animals and despite normal mitochondrial binding of the hexokinase isoenzymes, the metabolic response to a high concentration of D-glucose is severely affected, especially in terms of D-[6-14C]glucose oxidation [25].
  • Exogenous glycerol kinase competed effectively with mitochondrially bound hexokinase for extramitochondrial ATP, with relatively low levels of glycerol kinase completely inhibiting phosphorylation of Glc.(ABSTRACT TRUNCATED AT 400 WORDS)[26]
  • The studies reveal that a significant fraction of the ADP generated by either adenylate kinase in the intermembrane space or by outer membrane bound hexokinase isozyme I, is not accessible to extramitochondrial pyruvate kinase [27].
 

Enzymatic interactions of Hk1

 

Regulatory relationships of Hk1

 

Other interactions of Hk1

 

Analytical, diagnostic and therapeutic context of Hk1

References

  1. The complete amino acid sequence of the catalytic domain of rat brain hexokinase, deduced from the cloned cDNA. Schwab, D.A., Wilson, J.E. J. Biol. Chem. (1988) [Pubmed]
  2. High glucose induces type 1 hexokinase gene expression in isolated glomeruli of diabetic rats and in mesangial cells. Henningsen, C., Zahner, G., Thaiss, F. Nephron. Physiology [electronic resource]. (2003) [Pubmed]
  3. Targeting of hexokinase 1 to liver and hepatoma mitochondria. Gelb, B.D., Adams, V., Jones, S.N., Griffin, L.D., MacGregor, G.R., McCabe, E.R. Proc. Natl. Acad. Sci. U.S.A. (1992) [Pubmed]
  4. Profound underestimation of glucose uptake by [18F]2-deoxy-2-fluoroglucose in reperfused rat heart muscle. Doenst, T., Taegtmeyer, H. Circulation (1998) [Pubmed]
  5. Anomeric specificity of hexokinase in rat, human, and murine tumor cells. Malaisse, W.J., Giroix, M.H., Dufrane, S.P., Malaisse-Lagae, F., Sener, A. Cancer Res. (1985) [Pubmed]
  6. Rapid eye movement sleep-deprivation-induced changes in glucose metabolic enzymes in rat brain. Thakkar, M., Mallick, B.N. Sleep. (1993) [Pubmed]
  7. The effect of food deprivation on the activities of some enzymes of the metabolism of carbohydrates in the submandibular salivary glands of rats. Leal, A., Pedroso, F.I., Nicolau, J. International journal for vitamin and nutrition research. Internationale Zeitschrift für Vitamin- und Ernährungsforschung. Journal international de vitaminologie et de nutrition. (1980) [Pubmed]
  8. Biochemical adaptation of cardiac and skeletal muscle to physical activity. Turcotte, R.A., Belcastro, A.N. Int. J. Biochem. (1991) [Pubmed]
  9. Inhibition of early apoptotic events by Akt/PKB is dependent on the first committed step of glycolysis and mitochondrial hexokinase. Gottlob, K., Majewski, N., Kennedy, S., Kandel, E., Robey, R.B., Hay, N. Genes Dev. (2001) [Pubmed]
  10. Hexokinase-mitochondria interaction mediated by Akt is required to inhibit apoptosis in the presence or absence of Bax and Bak. Majewski, N., Nogueira, V., Bhaskar, P., Coy, P.E., Skeen, J.E., Gottlob, K., Chandel, N.S., Thompson, C.B., Robey, R.B., Hay, N. Mol. Cell (2004) [Pubmed]
  11. Hexokinase receptor complex in hepatoma mitochondria: evidence from N,N'-dicyclohexylcarbodiimide-labeling studies for the involvement of the pore-forming protein VDAC. Nakashima, R.A., Mangan, P.S., Colombini, M., Pedersen, P.L. Biochemistry (1986) [Pubmed]
  12. Rat C6 glioma cell growth is related to glucose transport and metabolism. Nagamatsu, S., Nakamichi, Y., Inoue, N., Inoue, M., Nishino, H., Sawa, H. Biochem. J. (1996) [Pubmed]
  13. Effect of prenatally-induced and postnatally-maintained ketosis on beta-hydroxybutyrate dehydrogenase and hexokinase levels in the developing rat brain. Sherman, T.G., Wilson, J.E. J. Neurochem. (1978) [Pubmed]
  14. Effect of hypo- and hyperthyroidism on hexokinase in the developing cerebellum of the rat. Gutekunst, D.I., Wilson, J.E. J. Neurochem. (1981) [Pubmed]
  15. Naftidrofuryl oxalate improves impaired brain glucose metabolism after microsphere-induced cerebral embolism in rats. Takeo, S., Tanonaka, R., Miyake, K., Tanonaka, K., Taguchi, T., Kawakami, K., Ono, M., Hiramatsu, M., Okano, K. J. Pharmacol. Exp. Ther. (1991) [Pubmed]
  16. The structure of mammalian hexokinase-1. Mulichak, A.M., Wilson, J.E., Padmanabhan, K., Garavito, R.M. Nat. Struct. Biol. (1998) [Pubmed]
  17. Complete amino acid sequence of rat brain hexokinase, deduced from the cloned cDNA, and proposed structure of a mammalian hexokinase. Schwab, D.A., Wilson, J.E. Proc. Natl. Acad. Sci. U.S.A. (1989) [Pubmed]
  18. Rat brain hexokinase: amino acid sequence at the substrate hexose binding site is homologous to that of yeast hexokinase. Schirch, D.M., Wilson, J.E. Arch. Biochem. Biophys. (1987) [Pubmed]
  19. Heterogeneity in glucose sensitivity among pancreatic beta-cells is correlated to differences in glucose phosphorylation rather than glucose transport. Heimberg, H., De Vos, A., Vandercammen, A., Van Schaftingen, E., Pipeleers, D., Schuit, F. EMBO J. (1993) [Pubmed]
  20. Involvement of porin N,N-dicyclohexylcarbodiimide-reactive domain in hexokinase binding to the outer mitochondrial membrane. Al Jamal, J.A. Protein J. (2005) [Pubmed]
  21. Glucokinase and cytosolic phosphoenolpyruvate carboxykinase (GTP) in the human liver. Regulation of gene expression in cultured hepatocytes. Iynedjian, P.B., Marie, S., Gjinovci, A., Genin, B., Deng, S.P., Buhler, L., Morel, P., Mentha, G. J. Clin. Invest. (1995) [Pubmed]
  22. Modulation of hexokinase association with mitochondria analyzed with quantitative three-dimensional confocal microscopy. Lynch, R.M., Fogarty, K.E., Fay, F.S. J. Cell Biol. (1991) [Pubmed]
  23. Compartmentation of hexokinase in rat heart. A critical factor for tracer kinetic analysis of myocardial glucose metabolism. Russell, R.R., Mrus, J.M., Mommessin, J.I., Taegtmeyer, H. J. Clin. Invest. (1992) [Pubmed]
  24. The intra-mitochondrial cytochrome c distribution varies correlated to the formation of a complex between VDAC and the adenine nucleotide translocase: this affects Bax-dependent cytochrome c release. Vyssokikh, M., Zorova, L., Zorov, D., Heimlich, G., Jürgensmeier, J., Schreiner, D., Brdiczka, D. Biochim. Biophys. Acta (2004) [Pubmed]
  25. Impairment of the mitochondrial oxidative response to D-glucose in pancreatic islets from adult rats injected with streptozotocin during the neonatal period. Giroix, M.H., Sener, A., Bailbe, D., Portha, B., Malaisse, W.J. Diabetologia (1990) [Pubmed]
  26. Hexokinase of rat brain mitochondria: relative importance of adenylate kinase and oxidative phosphorylation as sources of substrate ATP, and interaction with intramitochondrial compartments of ATP and ADP. BeltrandelRio, H., Wilson, J.E. Arch. Biochem. Biophys. (1991) [Pubmed]
  27. Experimental evidence for dynamic compartmentation of ADP at the mitochondrial periphery: coupling of mitochondrial adenylate kinase and mitochondrial hexokinase with oxidative phosphorylation under conditions mimicking the intracellular colloid osmotic pressure. Laterveer, F.D., Nicolay, K., Gellerich, F.N. Mol. Cell. Biochem. (1997) [Pubmed]
  28. Phosphorylation of D-glucosamine by rat liver glucokinase. Oguchi, M., Miyatake, Y., Ayabe, J., Akamatsu, N. J. Biochem. (1975) [Pubmed]
  29. Control of glucose metabolism in pancreatic beta-cells by glucokinase, hexokinase, and phosphofructokinase. Model study with cell lines derived from beta-cells. Shimizu, T., Parker, J.C., Najafi, H., Matschinsky, F.M. Diabetes (1988) [Pubmed]
  30. Endothelin-1 stimulates the translocation and upregulation of both glucose transporter and hexokinase in astrocytes: relationship with gap junctional communication. Sánchez-Alvarez, R., Tabernero, A., Medina, J.M. J. Neurochem. (2004) [Pubmed]
  31. Amylin and epinephrine have no direct effect on glucose transport in isolated rat soleus muscle. Pittner, R.A., Wolfe-Lopez, D., Young, A.A., Rink, T.J. FEBS Lett. (1995) [Pubmed]
  32. Proteinaceous complexes from mitochondrial contact sites. Vyssokikh, M.Y., Goncharova, N.Y., Zhuravlyova, A.V., Zorova, L.D., Kirichenko, V.V., Krasnikov, B.F., Kuzminova, A.E., Melikov, K.C., Melik-Nubarov, N.S., Samsonov, A.V., Belousov, V.V., Prischepova, A.E., Zorov, D.B. Biochemistry Mosc. (1999) [Pubmed]
  33. Differential effects of overexpressed glucokinase and hexokinase I in isolated islets. Evidence for functional segregation of the high and low Km enzymes. Becker, T.C., Noel, R.J., Johnson, J.H., Lynch, R.M., Hirose, H., Tokuyama, Y., Bell, G.I., Newgard, C.B. J. Biol. Chem. (1996) [Pubmed]
  34. Stimulation of brain hexokinase gene expression by recombinant brain insulin-like growth factor in C6 glial cells. Sebastian, S., Kenkare, U.W. Exp. Cell Res. (1999) [Pubmed]
  35. Mitochondrial hexokinase of rat hepatoma cells in culture: solubilization and kinetic properties. Bustamante, E., Pedersen, P.L. Biochemistry (1980) [Pubmed]
  36. Molecular and functional characterization of pituitary adenylate cyclase-activating polypeptide (PACAP-38)/vasoactive intestinal polypeptide receptors in pancreatic beta-cells and effects of PACAP-38 on components of the insulin secretory system. Borboni, P., Porzio, O., Pierucci, D., Cicconi, S., Magnaterra, R., Federici, M., Sesti, G., Lauro, D., D'Agata, V., Cavallaro, S., Marlier, L.N. Endocrinology (1999) [Pubmed]
  37. Glucose sensing in pancreatic islet beta cells: the key role of glucokinase and the glycolytic intermediates. German, M.S. Proc. Natl. Acad. Sci. U.S.A. (1993) [Pubmed]
  38. Purification and characterization of a bindable form of mitochondrial bound hexokinase from the highly glycolytic AS-30D rat hepatoma cell line. Nakashima, R.A., Paggi, M.G., Scott, L.J., Pedersen, P.L. Cancer Res. (1988) [Pubmed]
  39. Glucose catabolism in cancer cells: amplification of the gene encoding type II hexokinase. Rempel, A., Mathupala, S.P., Griffin, C.A., Hawkins, A.L., Pedersen, P.L. Cancer Res. (1996) [Pubmed]
 
WikiGenes - Universities