The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Manihot

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Manihot

 

High impact information on Manihot

  • The use of cassava as a source of ethanol for fuel depends on finding an efficient source of energy for distillation or an improved method of separating ethanol from water [6].
  • We investigated a konzo-affected population in rural Zaire and measured the cyanogen content of cassava flour, determined urinary thiocyanate as an indicator of cyanide intake, and compared blood cyanide concentrations in cases and controls [7].
  • The mean blood glucose was similar whether cassava was consumed once daily, more than once daily, or less than once daily [8].
  • In vitro binding assays revealed the ability of AC4 of ACMV (A-AC4) but not East African cassava mosaic Cameroon virus AC2 to bind single-stranded forms of miRNAs and short interfering RNAs but not double-stranded RNA forms [9].
  • As with siRNA-induced reporter gene silencing, the siRNA targeting ACMV AC1 was specific and did not affect the replication of East African cassava mosaic Cameroon virus [1].
 

Chemical compound and disease context of Manihot

 

Biological context of Manihot

  • The G3pdh locus provides high levels of noncoding sequence variation in cassava and its wild relatives, with 28 haplotypes identified among 212 individuals (424 alleles) examined [15].
  • Cytochromes P-450 from cassava (Manihot esculenta Crantz) catalyzing the first steps in the biosynthesis of the cyanogenic glucosides linamarin and lotaustralin. Cloning, functional expression in Pichia pastoris, and substrate specificity of the isolated recombinant enzymes [16].
  • Furthermore, we determined that the C terminus of AC1 that overlaps with the N terminus of AC2 early viral genes involved in virus replication were the primary targets for ACMV-[CM]-induced PTGS, whereas the C terminus of BC1 was targeted for the East African cassava mosaic Cameroon virus [17].
  • Tryptophan 128 of hydroxynitrile lyase of Manihot esculenta (MeHNL) covers a significant part of a hydrophobic channel that gives access to the active site of the enzyme [18].
  • Mutagenesis of the BC1 and BV1 genes of African cassava mosaic virus identifies conserved amino acids that are essential for spread [19].
 

Anatomical context of Manihot

 

Associations of Manihot with chemical compounds

  • The hydroxynitrile lyase from cassava (Manihot esculenta Crantz) (EC 4.1.2.37) catalyzes the decomposition of the achiral alpha-hydroxynitrile acetone cyanohydrin into HCN and acetone during cyanogenesis of damaged plants [25].
  • Each cytochrome P-450 metabolizes L-valine as well as L-isoleucine consistent with the co-occurrence of linamarin and lotaustralin in cassava [16].
  • The ingestion of cassava in Dich Giao did not cause a major change in thyroid hormone economy even though iodine intake was marginally low; the data suggest that the goitrogenic effect of cassava is easily overcome by supplementary iodine, even when it is ingested irregularly [26].
  • Ectopic expression of CYP79D2 from cassava (Manihot esculenta Crantz.) in L. japonicus resulted in a 5- to 20-fold increase of linamarin content, whereas the relative amounts of lotaustralin and rhodiocyanoside A/D were unaltered [27].
  • Expression of CYP79D2 from cassava (Manihot esculenta Crantz.) in Arabidopsis resulted in the production of valine (Val)- and isoleucine-derived glucosinolates not normally found in this ecotype [28].
 

Gene context of Manihot

  • The effect of feeding rats with cassava diet (tapioca) has been investigated with respect to the activities of superoxide dismutase, catalase and levels of TBARS [29].
  • Moreover, a wide range in values of Km (CO2) for the C3 photosynthetic enzyme Rubisco was found among cassava cultivars indicating the possibility of selection for higher affinity to CO2, and consequently higher leaf photosynthesis [30].
  • Leaves of cassava and wild Manihot possess elevated activities of the C4 enzyme PEP carboxylase but lack the leaf Kranz anatomy typical of C4 species, pointing to the need for further research on cultivated and wild Manihot to further improve its photosynthetic potential and yield,particularly under stressful environments [30].
  • Enough casein was added to all cassava diets to bring protein energy to 8% of the total [31].
  • Two libraries were constructed from the cassava clones, TMS 30001, resistant to the cassava mosaic disease (CMD) and the cassava bacterial blight (CBB), and MECU72, resistant to cassava white fly [32].
 

Analytical, diagnostic and therapeutic context of Manihot

References

  1. Short interfering RNA-mediated interference of gene expression and viral DNA accumulation in cultured plant cells. Vanitharani, R., Chellappan, P., Fauquet, C.M. Proc. Natl. Acad. Sci. U.S.A. (2003) [Pubmed]
  2. Differential roles of AC2 and AC4 of cassava geminiviruses in mediating synergism and suppression of posttranscriptional gene silencing. Vanitharani, R., Chellappan, P., Pita, J.S., Fauquet, C.M. J. Virol. (2004) [Pubmed]
  3. Konzo in the Central African Republic. Tylleskär, T., Légué, F.D., Peterson, S., Kpizingui, E., Stecker, P. Neurology (1994) [Pubmed]
  4. Lactobacillus manihotivorans sp. nov., a new starch-hydrolysing lactic acid bacterium isolated during cassava sour starch fermentation. Morlon-Guyot, J., Guyot, J.P., Pot, B., Jacobe de Haut, I., Raimbault, M. Int. J. Syst. Bacteriol. (1998) [Pubmed]
  5. Gene expression profile in response to Xanthomonas axonopodis pv. manihotis infection in cassava using a cDNA microarray. Lopez, C., Soto, M., Restrepo, S., Piégu, B., Cooke, R., Delseny, M., Tohme, J., Verdier, V. Plant Mol. Biol. (2005) [Pubmed]
  6. Cassava: a basic energy source in the tropics. Cock, J.H. Science (1982) [Pubmed]
  7. Cassava cyanogens and konzo, an upper motoneuron disease found in Africa. Tylleskär, T., Banea, M., Bikangi, N., Cooke, R.D., Poulter, N.H., Rosling, H. Lancet (1992) [Pubmed]
  8. Absence of diabetes in a rural West African population with a high carbohydrate/cassava diet. Teuscher, T., Baillod, P., Rosman, J.B., Teuscher, A. Lancet (1987) [Pubmed]
  9. MicroRNA-binding viral protein interferes with Arabidopsis development. Chellappan, P., Vanitharani, R., Fauquet, C.M. Proc. Natl. Acad. Sci. U.S.A. (2005) [Pubmed]
  10. Cytosine methylation inhibits replication of African cassava mosaic virus by two distinct mechanisms. Ermak, G., Paszkowski, U., Wohlmuth, M., Mittelsten Scheid, O., Paszkowski, J. Nucleic Acids Res. (1993) [Pubmed]
  11. Analysis of the potential promoter sequences of African cassava mosaic virus by transient expression of the beta-glucuronidase gene. Zhan, X.C., Haley, A., Richardson, K., Morris, B. J. Gen. Virol. (1991) [Pubmed]
  12. Incidence of endemic ataxic polyneuropathy and its relation to exposure to cyanide in a Nigerian community. Oluwole, O.S., Onabolu, A.O., Cotgreave, I.A., Rosling, H., Persson, A., Link, H. J. Neurol. Neurosurg. Psychiatr. (2003) [Pubmed]
  13. Vitamin B nutrition in the Nigerian tropical ataxic neuropathy. Osuntokun, B.O., Aladetoyinbo, A., Bademosi, O. J. Neurol. Neurosurg. Psychiatr. (1985) [Pubmed]
  14. Mutation of three cysteine residues in Tomato yellow leaf curl virus-China C2 protein causes dysfunction in pathogenesis and posttranscriptional gene-silencing suppression. van, W.R., Dong, X., Liu, H., Tien, P., Stanley, J., Hong, Y. Mol. Plant Microbe Interact. (2002) [Pubmed]
  15. Evidence on the origin of cassava: phylogeography of Manihot esculenta. Olsen, K.M., Schaal, B.A. Proc. Natl. Acad. Sci. U.S.A. (1999) [Pubmed]
  16. Cytochromes P-450 from cassava (Manihot esculenta Crantz) catalyzing the first steps in the biosynthesis of the cyanogenic glucosides linamarin and lotaustralin. Cloning, functional expression in Pichia pastoris, and substrate specificity of the isolated recombinant enzymes. Andersen, M.D., Busk, P.K., Svendsen, I., Møller, B.L. J. Biol. Chem. (2000) [Pubmed]
  17. Short interfering RNA accumulation correlates with host recovery in DNA virus-infected hosts, and gene silencing targets specific viral sequences. Chellappan, P., Vanitharani, R., Pita, J., Fauquet, C.M. J. Virol. (2004) [Pubmed]
  18. Structure determinants of substrate specificity of hydroxynitrile lyase from Manihot esculenta. Lauble, H., Miehlich, B., Förster, S., Kobler, C., Wajant, H., Effenberger, F. Protein Sci. (2002) [Pubmed]
  19. Mutagenesis of the BC1 and BV1 genes of African cassava mosaic virus identifies conserved amino acids that are essential for spread. Haley, A., Richardson, K., Zhan, X., Morris, B. J. Gen. Virol. (1995) [Pubmed]
  20. Cassava is not a goitrogen in mice. Hershman, J.M., Pekary, A.E., Sugawara, M., Adler, M., Turner, L., Demetriou, J.A., Hershman, J.D. Proc. Soc. Exp. Biol. Med. (1985) [Pubmed]
  21. Molecular characterization and expression of a cDNA encoding copper/zinc superoxide dismutase from cultured cells of cassava (Manihot esculenta Crantz). Lee, H.S., Kim, K.Y., You, S.H., Kwon, S.Y., Kwak, S.S. Mol. Gen. Genet. (1999) [Pubmed]
  22. Enrichment of eggs with n-3 polyunsaturated fatty acids: effects of vitamin E supplementation. Grune, T., Krämer, K., Hoppe, P.P., Siems, W. Lipids (2001) [Pubmed]
  23. Simultaneous analysis of the bidirectional African cassava mosaic virus promoter activity using two different luciferase genes. Frey, P.M., Schärer-Hernández, N.G., Fütterer, J., Potrykus, I., Puonti-Kaerlas, J. Virus Genes (2001) [Pubmed]
  24. The teratogenic effects of dietary Cassava on the pregnant albino rat: a preliminary report. Singh, J.D. Teratology (1981) [Pubmed]
  25. Identification of potential active-site residues in the hydroxynitrile lyase from Manihot esculenta by site-directed mutagenesis. Wajant, H., Pfizenmaier, K. J. Biol. Chem. (1996) [Pubmed]
  26. Endemic goiter in Vietnam. Hershman, J.M., Due, D.T., Sharp, B., My, L., Kent, J.R., Binh, L.N., Reed, A.W., Phuc, L.D., Van Herle, A.J., Thai, N.A., Troung, T.X., Van, N.V., Sugawara, M., Pekary, A.E. J. Clin. Endocrinol. Metab. (1983) [Pubmed]
  27. Biosynthesis of the nitrile glucosides rhodiocyanoside A and D and the cyanogenic glucosides lotaustralin and linamarin in Lotus japonicus. Forslund, K., Morant, M., Jørgensen, B., Olsen, C.E., Asamizu, E., Sato, S., Tabata, S., Bak, S. Plant Physiol. (2004) [Pubmed]
  28. Metabolic engineering of valine- and isoleucine-derived glucosinolates in Arabidopsis expressing CYP79D2 from Cassava. Mikkelsen, M.D., Halkier, B.A. Plant Physiol. (2003) [Pubmed]
  29. Effect of protein supplemented cassava diet in rats. Sreeja, V.G., Leelamma, S. Indian J. Biochem. Biophys. (1996) [Pubmed]
  30. Cassava biology and physiology. El-Sharkawy, M.A. Plant Mol. Biol. (2004) [Pubmed]
  31. Effect of amounts consumed on the digestion of cassava by young children. Morales, E., Graham, G.G. J. Nutr. (1987) [Pubmed]
  32. Bacterial artificial chromosome (BAC) library resource for positional cloning of pest and disease resistance genes in cassava (Manihot esculenta Crantz). Tomkins, J., Fregene, M., Main, D., Kim, H., Wing, R., Tohme, J. Plant Mol. Biol. (2004) [Pubmed]
  33. Evidence of synergism between African cassava mosaic virus and a new double-recombinant geminivirus infecting cassava in Cameroon. Fondong, V.N., Pita, J.S., Rey, M.E., de Kochko, A., Beachy, R.N., Fauquet, C.M. J. Gen. Virol. (2000) [Pubmed]
  34. Cryopreservation of embryogenic calli of cassava using sucrose cryoprotection and air desiccation. Danso, K.E., Ford-Lloyd, B.V. Plant Cell Rep. (2004) [Pubmed]
  35. Comparison of citric acid production by solid-state fermentation in flask, column, tray, and drum bioreactors. Vandenberghe, L.P., Soccol, C.R., Prado, F.C., Pandey, A. Appl. Biochem. Biotechnol. (2004) [Pubmed]
  36. Towards the identification of cassava root protein genes. De Souza, C.R., Carvalho, L.J., De Almeida, E.R., Gander, E.S. Plant foods for human nutrition (Dordrecht, Netherlands) (2002) [Pubmed]
  37. Isolation and characterization of an alpha-amylase gene in cassava (Manihot esculenta). Tangphatsornruang, S., Naconsie, M., Thammarongtham, C., Narangajavana, J. Plant Physiol. Biochem. (2005) [Pubmed]
 
WikiGenes - Universities