The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 

Links

 

Gene Review

HSPA9  -  heat shock 70kDa protein 9 (mortalin)

Homo sapiens

Synonyms: 75 kDa glucose-regulated protein, CRP40, CSA, GRP-75, GRP75, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of HSPA9

 

Psychiatry related information on HSPA9

  • METHODS: Polysomnograms with digitized video surveillance of 20 consecutive patients with heart failure and CSA-CSR were analyzed for total apnea-hypopnea index, mean event duration, and mean oxygen desaturation according to sleep stage and position [4].
  • These results suggest that the neutropenia which occurs in relation to alcohol abuse may in part be related to decreased CSA production from T cells [5].
  • Time spent in light, moderate, and hard physical activity was not significantly different between PAR, CSA, and Tritrac [6].
  • Two experiments examined the effect of altering the moment of inertia within an anatomical unit on simple reaction time (SRT), premotor time (PMT), and motor time (MOT) during the initiation of a discrete rapid movement [7].
  • Five of the 6 cases, in which CSA treatment was started early (before the second week of induction), survived the critical period with recovery of neutrophil counts within a week [8].
 

High impact information on HSPA9

 

Chemical compound and disease context of HSPA9

 

Biological context of HSPA9

 

Anatomical context of HSPA9

 

Associations of HSPA9 with chemical compounds

  • By positional cloning, rescue, and morpholino knockdown experiments, we demonstrate that crs encodes a conserved mitochondrial matrix chaperone HSPA9B containing a glycine-to-glutamate substitution within the substrate-binding domain [22].
  • Knockdown of grp75 abolished the stimulatory effect, highlighting chaperone-mediated conformational coupling between the IP(3)R and the mitochondrial Ca(2+) uptake machinery [11].
  • The purpose of this study was to determine if lipid transfer protein (LTP I) regulates the plasma lipoprotein distribution of cyclosporine (CSA) [23].
  • Stress chaperones, mortalin, and pex19p mediate 5-aza-2' deoxycytidine-induced senescence of cancer cells by DNA methylation-independent pathway [24].
  • This study was undertaken to detect the tubular distribution of four stress proteins (HSP25, HSP60, GRP75, HSP72) in the rat kidney injected with HgCl2 and to quantify lysosomal and mitochondrial changes in straight proximal tubules, the main mercury target [25].
 

Physical interactions of HSPA9

 

Enzymatic interactions of HSPA9

  • An overexpression of mot-2 resulted in reduced level of Ras and phosphorylated ERK2 [16].
 

Co-localisations of HSPA9

 

Regulatory relationships of HSPA9

 

Other interactions of HSPA9

  • Moreover, a binding assay in vitro with the use of recombinant FGF-1 and mortalin demonstrated a direct physical interaction between the two proteins [28].
  • These were rescued by co-expression of MPD from an exogenous promoter demonstrating a functional link between mot-2, MPD, and Ras [16].
  • Taken together, this study for the first time delineates: (i) molecular interactions of HSP60 with mortalin; (ii) their co- and exclusive localizations in vivo; (iii) their involvement in tumorigenesis; and (iv) their functional distinction in pathways involved in senescence [17].
  • This is the first demonstration that mot-2 and telomerase can cooperate in the immortalization process [15].
  • Here we investigated the chaperone activities of the mitochondrial HSP70 protein, mortalin, which is a heat-uninducible stress protein involved in immortalization and tumorigenesis [29].
 

Analytical, diagnostic and therapeutic context of HSPA9

References

  1. Human mortalin (HSPA9): a candidate for the myeloid leukemia tumor suppressor gene on 5q31. Xie, H., Hu, Z., Chyna, B., Horrigan, S.K., Westbrook, C.A. Leukemia (2000) [Pubmed]
  2. Mortalin is over-expressed by colorectal adenocarcinomas and correlates with poor survival. Dundas, S.R., Lawrie, L.C., Rooney, P.H., Murray, G.I. J. Pathol. (2005) [Pubmed]
  3. Expression of mortalin in patients with chronic atrial fibrillation. Kirmanoglou, K., Hannekum, A., Schäfler, A.E. Basic Res. Cardiol. (2004) [Pubmed]
  4. Lateral sleeping position reduces severity of central sleep apnea / Cheyne-Stokes respiration. Szollosi, I., Roebuck, T., Thompson, B., Naughton, M.T. Sleep. (2006) [Pubmed]
  5. Mechanism of inhibition of granulopoiesis by ethanol. Imperia, P.S., Chikkappa, G., Phillips, P.G. Proc. Soc. Exp. Biol. Med. (1984) [Pubmed]
  6. Comparisons of four methods of estimating physical activity in adult women. Leenders NYJM, n.u.l.l., Sherman, W.M., Nagaraja, H.N. Medicine and science in sports and exercise. (2000) [Pubmed]
  7. Effects of moment of inertia on simple reaction time. Anson, J.G. Journal of motor behavior. (1989) [Pubmed]
  8. Management of severe neutropenia with cyclosporin during initial treatment of Epstein-Barr virus-related hemophagocytic lymphohistiocytosis. Imashuku, S., Hibi, S., Kuriyama, K., Tabata, Y., Hashida, T., Iwai, A., Kato, M., Yamashita, N., Oda MUchida, M., Kinugawa, N., Sawada, M., Konno, M. Leuk. Lymphoma (2000) [Pubmed]
  9. The glycosaminoglycans of the human artery and their changes in atherosclerosis. Stevens, R.L., Colombo, M., Gonzales, J.J., Hollander, W., Schmid, K. J. Clin. Invest. (1976) [Pubmed]
  10. Use of bone-marrow culture in prediction of acute leukaemic transformation in preleukaemia. Francis, G.E., Wing, M.A., Miller, E.J., Berney, J.J., Wonke, B., Hoffbrand, A.V. Lancet (1983) [Pubmed]
  11. Chaperone-mediated coupling of endoplasmic reticulum and mitochondrial Ca2+ channels. Szabadkai, G., Bianchi, K., V??rnai, P., De Stefani, D., Wieckowski, M.R., Cavagna, D., Nagy, A.I., Balla, T., Rizzuto, R. J. Cell Biol. (2006) [Pubmed]
  12. Mitoxantrone, etoposide, and cyclosporine therapy in pediatric patients with recurrent or refractory acute myeloid leukemia. Dahl, G.V., Lacayo, N.J., Brophy, N., Dunussi-Joannopoulos, K., Weinstein, H.J., Chang, M., Sikic, B.I., Arceci, R.J. J. Clin. Oncol. (2000) [Pubmed]
  13. Effect of cyclosporin and interleukin-2 on the restoration of in vitro immune responses to cytomegalovirus. Converse, P.J., Hess, A.D. Scand. J. Immunol. (1985) [Pubmed]
  14. In vivo and in vitro effects of lithium on granulopoiesis in human neutropenic disorders. Robinson, W.A., Entringer, M.A., Huber, J., Gupta, R. Adv. Exp. Med. Biol. (1980) [Pubmed]
  15. Overexpressed mortalin (mot-2)/mthsp70/GRP75 and hTERT cooperate to extend the in vitro lifespan of human fibroblasts. Kaul, S.C., Yaguchi, T., Taira, K., Reddel, R.R., Wadhwa, R. Exp. Cell Res. (2003) [Pubmed]
  16. Mortalin-MPD (mevalonate pyrophosphate decarboxylase) interactions and their role in control of cellular proliferation. Wadhwa, R., Yaguchi, T., Hasan, M.K., Taira, K., Kaul, S.C. Biochem. Biophys. Res. Commun. (2003) [Pubmed]
  17. Identification and characterization of molecular interactions between mortalin/mtHsp70 and HSP60. Wadhwa, R., Takano, S., Kaur, K., Aida, S., Yaguchi, T., Kaul, Z., Hirano, T., Taira, K., Kaul, S.C. Biochem. J. (2005) [Pubmed]
  18. Inactivation of p53 and life span extension of human diploid fibroblasts by mot-2. Kaula, S.C., Reddelb, R.R., Sugiharac, T., Mitsuia, Y., Wadhwac, R. FEBS Lett. (2000) [Pubmed]
  19. Voltage-dependent anion-selective channel (VDAC) interacts with the dynein light chain Tctex1 and the heat-shock protein PBP74. Schwarzer, C., Barnikol-Watanabe, S., Thinnes, F.P., Hilschmann, N. Int. J. Biochem. Cell Biol. (2002) [Pubmed]
  20. Cloning and subcellular localization of human mitochondrial hsp70. Bhattacharyya, T., Karnezis, A.N., Murphy, S.P., Hoang, T., Freeman, B.C., Phillips, B., Morimoto, R.I. J. Biol. Chem. (1995) [Pubmed]
  21. Implication of PBP74/mortalin/GRP75 in the radio-adaptive response. Carette, J., Lehnert, S., Chow, T.Y. Int. J. Radiat. Biol. (2002) [Pubmed]
  22. Loss of Hspa9b in zebrafish recapitulates the ineffective hematopoiesis of the myelodysplastic syndrome. Craven, S.E., French, D., Ye, W., de Sauvage, F., Rosenthal, A. Blood (2005) [Pubmed]
  23. Lipid transfer protein I facilitated transfer of cyclosporine from low- to high-density lipoproteins is only partially dependent on its cholesteryl ester transfer activity. Wasan, K.M., Ramaswamy, M., Wong, W., Pritchard, P.H. J. Pharmacol. Exp. Ther. (1998) [Pubmed]
  24. Stress chaperones, mortalin, and pex19p mediate 5-aza-2' deoxycytidine-induced senescence of cancer cells by DNA methylation-independent pathway. Widodo, N., Deocaris, C.C., Kaur, K., Hasan, K., Yaguchi, T., Yamasaki, K., Sugihara, T., Ishii, T., Wadhwa, R., Kaul, S.C. J. Gerontol. A Biol. Sci. Med. Sci. (2007) [Pubmed]
  25. Mercuric chloride-induced alterations in stress protein distribution in rat kidney. Stacchiotti, A., Lavazza, A., Rezzani, R., Borsani, E., Rodella, L., Bianchi, R. Histol. Histopathol. (2004) [Pubmed]
  26. Mortalin controls centrosome duplication via modulating centrosomal localization of p53. Ma, Z., Izumi, H., Kanai, M., Kabuyama, Y., Ahn, N.G., Fukasawa, K. Oncogene (2006) [Pubmed]
  27. Glucose regulated proteins 78 and 75 bind to the receptor for hyaluronan mediated motility in interphase microtubules. Kuwabara, H., Yoneda, M., Hayasaki, H., Nakamura, T., Mori, H. Biochem. Biophys. Res. Commun. (2006) [Pubmed]
  28. Fibroblast growth factor-1 interacts with the glucose-regulated protein GRP75/mortalin. Mizukoshi, E., Suzuki, M., Loupatov, A., Uruno, T., Hayashi, H., Misono, T., Kaul, S.C., Wadhwa, R., Imamura, T. Biochem. J. (1999) [Pubmed]
  29. Structural and functional differences between mouse mot-1 and mot-2 proteins that differ in two amino acids. Deocaris, C.C., Yamasaki, K., Kaul, S.C., Wadhwa, R. Ann. N. Y. Acad. Sci. (2006) [Pubmed]
  30. Transplantation of human or rodent tumors into cyclosporine-treated mice: a feasible model for studies of tumor biology and chemotherapy. Fingert, H.J., Treiman, A., Pardee, A.B. Proc. Natl. Acad. Sci. U.S.A. (1984) [Pubmed]
  31. Variability of the 15N chemical shielding tensors in the B3 domain of protein g from 15N relaxation measurements at several fields. Implications for backbone order parameters. Hall, J.B., Fushman, D. J. Am. Chem. Soc. (2006) [Pubmed]
 
WikiGenes - Universities