The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
MeSH Review

Beta Rays

Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Beta Rays

  • PURPOSE: Postoperative adjuvant strontium-90 beta-ray therapy is a proven technique for reducing the recurrence rate of pterygium [1].
  • In view of the importance of clinical applications of ruthenium-106 beta-ray sources for the treatment of choroidal melanoma, experimental, and theoretical approaches are presented for the dosimetry of such sources [2].
  • Rhenium-188-hydroxyethylidine diphosphonate (188Re-HEDP) is a novel and attractive radiopharmaceutical that localizes in areas of osseous metastases and emits beta particles with energy sufficient to be therapeutically useful [3].
  • Four patients with carcinoma in situ were treated with strontium-90 beta ray application [4].
  • This work is performed to utilise the idea that the energetic beta-particle emitter, 166 Ho, coupled with phosphonate ligands such as APD and APDDMP could afford a highly effective radiopharmaceutical in the treatment of bone cancer [5].

Psychiatry related information on Beta Rays


High impact information on Beta Rays

  • The administered carcinogens included the aromatic hydrocarbons benzo[a]pyrene (BP), N-methyl-N-nitrosourea (MNU), 7, 12-dimethylbenz[a]anthracene (DMBA), 3-methylcholanthrene (MCA), and yttrium-91 (91Y) beta radiation [7].
  • METHODS: 332 patients with in-stent restenosis underwent successful coronary intervention, and were then randomly allocated to intracoronary beta radiation with a phosphorus-32 source (n=166) or placebo (166) delivered into a centreing balloon catheter through an automatic afterloader [8].
  • The objective of this study was investigate the ability of local emission of beta-particles from a 32P-impregnated titanium "stent" wire source to inhibit vascular SMC and endothelial cell proliferation in cell culture and to determine the dose-response characteristics of this inhibition [9].
  • Quantitative analysis of tritium polymer standards and of brain sections labeled with tritiated vasopressin was carried out by using a gaseous detector of beta particles designed for this purpose [10].
  • CHO cells were labeled with tritiated thymidine ([3H]dTTP) for 12 hours and subsequently incubated with A(L) cells for 24 hours at 11 degrees C. The short-range beta-particles emitted by [3H]dTTP result in self-irradiation of labeled CHO cells; thus, biological effects on neighboring A(L) cells can be attributed to the bystander response [11].

Chemical compound and disease context of Beta Rays


Biological context of Beta Rays


Anatomical context of Beta Rays


Associations of Beta Rays with chemical compounds

  • Individual beta radiation dosimetry was based on pharmacokinetic studies of a 20 mCi tracer dose of 153Sm-EDTMP [24].
  • Twenty fully healed rabbit ear chambers in 13 rabbits were irradiated with single exposures of 7500 rads of beta-rays from a strontium-90 source [25].
  • The effect of stretching or unloading flexor pollicis longus indirectly has been investigated by altering the force on the wrist while the subject tracked a moving spot on a cathode ray oscilloscope by flexing the top joint of the thumb against a fixed stiff lever [26].
  • Conjugates of the beta-particle emitter, iodine-131, also were tested, for comparison [27].
  • Perfusion was measured by 85Kr (beta-ray) and 133Xe (gamma-ray) clearances, fluorescein angiography and diameter measurement of arteries [28].

Gene context of Beta Rays

  • Effect of beta radiation on TGF-beta1 and bFGF expression in hyperplastic prostatic tissues [29].
  • Herein, we have compared beta(-) particle RIT with antibodies targeting either CD19 or CD20 [30].
  • The beta particles emitted from the (90)Sr generate blue light (lambda(max) = 435 nm) from the plastic scintillator, and the blue light excites the analyte-responsive luminophores within the CRSA [31].
  • Moreover, targeted irradiation of these tumours by beta particle emitting isotopes attached to such somatostatin analogues may become possible [32].
  • Because LCD/TFT projectors present pictures in steady state at longer durations (e.g., after 70 ms), picture presentation is more ecologically valid than for common cathode ray tube (CRT) monitors that present pictures in multiples of refresh cycles [33].

Analytical, diagnostic and therapeutic context of Beta Rays


  1. Postoperative irradiation for pterygium: guidelines for optimal treatment. Brenner, D.J., Merriam, G.R. Int. J. Radiat. Oncol. Biol. Phys. (1994) [Pubmed]
  2. Dosimetry of ruthenium-106 eye applicators. Davelaar, J., Schaling, D.F., Hennen, L.A., Broerse, J.J. Medical physics. (1992) [Pubmed]
  3. Rhenium-188-HEDP therapy for the palliation of pain due to osseous metastases in lung cancer patients. Zhang, H., Tian, M., Li, S., Liu, J., Tanada, S., Endo, K. Cancer Biother. Radiopharm. (2003) [Pubmed]
  4. The use of strontium-90 in the treatment of carcinoma in situ of the conjunctiva. Elkon, D., Constable, W.C. Am. J. Ophthalmol. (1979) [Pubmed]
  5. Metal-ion speciation in blood plasma incorporating the tetraphosphonate, N,N-dimethylenephosphonate-1-hydroxy-4-aminopropilydenediphosphonate (APDDMP), in therapeutic radiopharmaceuticals. Zeevaart, J.R., Jarvis, N.V., Louw, W.K., Jackson, G.E. J. Inorg. Biochem. (2001) [Pubmed]
  6. The radiolysis of tryptophan and leucine with 32P beta-radiation. Blair, N.E., Bonner, W.A. J. Mol. Evol. (1980) [Pubmed]
  7. Induction of lung cancers in preselected, localized sites in the dog. Paladugu, R.R., Shors, E.C., Cohen, A.H., Matsumura, K., Benfield, J.R. J. Natl. Cancer Inst. (1980) [Pubmed]
  8. Use of localised intracoronary beta radiation in treatment of in-stent restenosis: the INHIBIT randomised controlled trial. Waksman, R., Raizner, A.E., Yeung, A.C., Lansky, A.J., Vandertie, L. Lancet (2002) [Pubmed]
  9. Low-dose, beta-particle emission from 'stent' wire results in complete, localized inhibition of smooth muscle cell proliferation. Fischell, T.A., Kharma, B.K., Fischell, D.R., Loges, P.G., Coffey, C.W., Duggan, D.M., Naftilan, A.J. Circulation (1994) [Pubmed]
  10. Localization and quantitation of tritiated compounds in tissue sections with a gaseous detector of beta particles: comparison with film autoradiography. Tribollet, E., Dreifuss, J.J., Charpak, G., Dominik, W., Zaganidis, N. Proc. Natl. Acad. Sci. U.S.A. (1991) [Pubmed]
  11. Assessment of low linear energy transfer radiation-induced bystander mutagenesis in a three-dimensional culture model. Persaud, R., Zhou, H., Baker, S.E., Hei, T.K., Hall, E.J. Cancer Res. (2005) [Pubmed]
  12. Beta-ray treatment of malignant epithelial tumors of the conjunctiva. Lommatzsch, P. Am. J. Ophthalmol. (1976) [Pubmed]
  13. Beta ray-induced scission of DNA in tritiated water and protection by a green tea percolate and (-)-epigallocatechin gallate. Yoshioka, H., Kurosaki, H., Yoshinaga, K., Saito, K., Yoshioka, H. Biosci. Biotechnol. Biochem. (1997) [Pubmed]
  14. Chromosome aberrations induced by tritiated water or 60Co gamma-rays at early pronuclear stage in mouse eggs. Matsuda, Y., Yamada, T., Tobari, I. Mutat. Res. (1986) [Pubmed]
  15. On (3)H beta-particle and (60)Co gamma irradiation of aqueous systems. Harris, R.E., Pimblott, S.M. Radiat. Res. (2002) [Pubmed]
  16. The induction of chromosome aberrations in human lymphocytes by in vitro irradiation with beta particles from tritiated water. Vulpis, N. Radiat. Res. (1984) [Pubmed]
  17. Cell death (apoptosis) in mouse intestine after continuous irradiation with gamma rays and with beta rays from tritiated water. Ijiri, K. Radiat. Res. (1989) [Pubmed]
  18. Theory of relative biological effectiveness (RBE) of tritium beta rays: bacteria killing effects of tritiated water. Iwanami, S., Oda, N. Physics in medicine and biology. (1987) [Pubmed]
  19. Dose responses for adaption to low doses of (60)Co gamma rays and (3)H beta particles in normal human fibroblasts. Broome, E.J., Brown, D.L., Mitchel, R.E. Radiat. Res. (2002) [Pubmed]
  20. The influence of large deletions on the mutation frequency induced by tritiated water and X-radiation in male Drosophila melanogaster post-meiotic germ cells. Fossett, N.G., Byrne, B.J., Kelley, S.J., Tucker, A.B., Arbour-Reily, P., Lee, W.R. Mutat. Res. (1994) [Pubmed]
  21. Use of beta radiation to control I.O.P. Adenwala, S.S., Erich, L.O. Indian journal of ophthalmology. (1992) [Pubmed]
  22. Influence of beta-radiation sterilisation in properties of new chitosan/soybean protein isolate membranes for guided bone regeneration. Silva, R.M., Elvira, C., Mano, J.F., San Román, J., Reis, R.L. Journal of materials science. Materials in medicine. (2004) [Pubmed]
  23. Internal dosimetry for inhalation of hafnium tritide aerosols. Inkret, W.C., Schillaci, M.E., Boyce, M.K., Cheng, Y.S., Efurd, D.W., Little, T.T., Miller, G., Musgrave, J.A., Wermer, J.R. Radiation protection dosimetry. (2001) [Pubmed]
  24. A phase I study of samarium-153 ethylenediaminetetramethylene phosphonate therapy for disseminated skeletal metastases. Turner, J.H., Claringbold, P.G., Hetherington, E.L., Sorby, P., Martindale, A.A. J. Clin. Oncol. (1989) [Pubmed]
  25. Morphology of irradiated microvasculature: a combined in vivo and electron-microscopic study. Narayan, K., Cliff, W.J. Am. J. Pathol. (1982) [Pubmed]
  26. A grab reflex in the human hand. Traub, M.M., Rothwell, J.C., Marsden, C.D. Brain (1980) [Pubmed]
  27. In vitro toxicity of A-431 carcinoma cells with antibodies to epidermal growth factor receptor and epithelial glycoprotein-1 conjugated to radionuclides emitting low-energy electrons. Michel, R.B., Castillo, M.E., Andrews, P.M., Mattes, M.J. Clin. Cancer Res. (2004) [Pubmed]
  28. Effects of hypercapnia on enhancement of decreased perfusion flow in non-infarcted brain tissues. Nakagawa, Y., Yamamoto, Y.L., Meyer, E., Hodge, C.P., Feindel, W. Stroke (1981) [Pubmed]
  29. Effect of beta radiation on TGF-beta1 and bFGF expression in hyperplastic prostatic tissues. Ma, Q.J., Gu, X.Q., Cao, X., Zhao, J., Kong, X.B., Li, Y.X., Cai, S.Y. Asian J. Androl. (2005) [Pubmed]
  30. Radioimmunotherapy for model B cell malignancies using 90Y-labeled anti-CD19 and anti-CD20 monoclonal antibodies. Ma, D., McDevitt, M.R., Barendswaard, E., Lai, L., Curcio, M.J., Pellegrini, V., Brechbiel, M.W., Scheinberg, D.A. Leukemia (2002) [Pubmed]
  31. Radioluminescent light source for the development of optical sensor arrays. Holthoff, W.G., Tehan, E.C., Bukowski, R.M., Kent, N., Maccraith, B.D., Bright, F.V. Anal. Chem. (2005) [Pubmed]
  32. Future medical prospects for Sandostatin. Harris, A.G. Zeitschrift für Gastroenterologie. (1990) [Pubmed]
  33. Visual masking in magnetic resonance imaging. Wiens, S., Ohman, A. Neuroimage (2005) [Pubmed]
  34. Radiolabeling brachytherapy sources with Re-188 through chelating microfilms: stents. Zamora, P.O., Osaki, S., Som, P., Ferretti, J.A., Choi, J.S., Hu, C., Tsang, R., Kuan, H.M., Singletary, S., Stern, R.A., Oster, Z.H. J. Biomed. Mater. Res. (2000) [Pubmed]
  35. Electron microscope fluoro-autoradiography: improvement of efficiency. Buchel, L.A., Delain, E., Bouteille, M. Journal of microscopy. (1978) [Pubmed]
  36. A mouse model for calculating cross-organ beta doses from yttrium-90-labeled immunoconjugates. Hui, T.E., Fisher, D.R., Kuhn, J.A., Williams, L.E., Nourigat, C., Badger, C.C., Beatty, B.G., Beatty, J.D. Cancer (1994) [Pubmed]
  37. Distribution of radiation in synovectomy of the knee with 166Ho-FHMA using image fusion. Vuorela, J., Kauppinen, T., Sokka, T. Cancer Biother. Radiopharm. (2005) [Pubmed]
  38. Beta-radiation for coronary in-stent restenosis. Latchem, D.R., Urban, P., Goy, J.J., De Benedetti, E., Pica, A., Coucke, P., Eeckhout, E. Catheterization and cardiovascular interventions : official journal of the Society for Cardiac Angiography & Interventions. (2000) [Pubmed]
WikiGenes - Universities