The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
MeSH Review


Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Salmonidae


High impact information on Salmonidae


Chemical compound and disease context of Salmonidae


Biological context of Salmonidae


Anatomical context of Salmonidae


Associations of Salmonidae with chemical compounds

  • Polysialoglycoproteins (PSGP), a class of glycoproteins containing oligo(poly)sialylglycan chains, are the major glycoprotein components in cortical alveoli of a number of Salmonidae fish eggs [25].
  • Lactate dehydrogenase isozymes of salmonid fish. Evidence for unique and rapid functional divergence of duplicated H-4 lactate dehydrogenases [26].
  • Use of a bacteriophage-derived endo-N-acetylneuraminidase and an equine antipolysialyl antibody to characterize the polysialyl residues in salmonid fish egg polysialoglycoproteins. Substrate and immunospecificity studies [25].
  • alpha 2-->8-Linked polysialic acid (polySia) chains terminate O-linked oligosaccharide chains on Salmonidae fish egg polysialoglycoproteins (PSGPs) [27].
  • Furthermore, RT-PCR and DNA sequencing analysis indicate the presence of three IGF-I prohormones in another member of the Salmonidae family, the Atlantic salmon (Salmo salar) [28].

Gene context of Salmonidae

  • Unlike GH and PRL, SL can exist in either glycosylated or nonglycosylated form, depending on the species; most teleosts possess glycosylated SLs, except for salmonids whose SLs are simple proteins [29].
  • Serum amyloid A (A-SAA) has previously been reported to be an acute-phase protein in salmonids [30].
  • This transgene dramatically enhances the growth of salmonids, and raises serum GH levels some forty-fold [31].
  • Cytochrome b and 16S rRNA sequence variation in the Salmo trutta (Salmonidae, Teleostei) species complex [32].
  • Therefore it is a reliable method for measuring IGF-II levels in salmonids and some nonsalmonid fish species [33].

Analytical, diagnostic and therapeutic context of Salmonidae


  1. Molecular cloning and expression in Escherichia coli of the glycoprotein gene of VHS virus, and immunization of rainbow trout with the recombinant protein. Lorenzen, N., Olesen, N.J., Jørgensen, P.E., Etzerodt, M., Holtet, T.L., Thøgersen, H.C. J. Gen. Virol. (1993) [Pubmed]
  2. Rescue of synthetic salmonid rhabdovirus minigenomes. Biacchesi, S., Yu, Y.X., Béarzotti, M., Tafalla, C., Fernandez-Alonso, M., Brémont, M. J. Gen. Virol. (2000) [Pubmed]
  3. Detection of Aeromonas salmonicida, causal agent of furunculosis in salmonid fish, from the tank effluent of hatchery-reared Atlantic salmon smolts. O'Brien, D., Mooney, J., Ryan, D., Powell, E., Hiney, M., Smith, P.R., Powell, R. Appl. Environ. Microbiol. (1994) [Pubmed]
  4. Isolates of Piscirickettsia salmonis from Scotland and Ireland show evidence of clonal diversity. Reid, H.I., Griffen, A.A., Birkbeck, T.H. Appl. Environ. Microbiol. (2004) [Pubmed]
  5. Atlantic salmon interferon genes: cloning, sequence analysis, expression, and biological activity. Robertsen, B., Bergan, V., Røkenes, T., Larsen, R., Albuquerque, A. J. Interferon Cytokine Res. (2003) [Pubmed]
  6. Lunar phasing of the thyroxine surge preparatory to seaward migration of salmonid fish. Grau, E.G., Dickhoff, W.W., Nishioka, R.S., Bern, H.A., Folmar, L.C. Science (1981) [Pubmed]
  7. Isoleucine-15 of rainbow trout carbonyl reductase-like 20beta-hydroxysteroid dehydrogenase is critical for coenzyme (NADPH) binding. Guan, G., Todo, T., Tanaka, M., Young, G., Nagahama, Y. Proc. Natl. Acad. Sci. U.S.A. (2000) [Pubmed]
  8. Identification of a new calcitonin gene in the salmon Oncorhynchus gorbuscha. Jansz, H., Martial, K., Zandberg, J., Milhaud, G., Benson, A.A., Julienne, A., Moukhtar, M.S., Cressent, M. Proc. Natl. Acad. Sci. U.S.A. (1996) [Pubmed]
  9. Modes of salmonid MHC class I and II evolution differ from the primate paradigm. Shum, B.P., Guethlein, L., Flodin, L.R., Adkison, M.A., Hedrick, R.P., Nehring, R.B., Stet, R.J., Secombes, C., Parham, P. J. Immunol. (2001) [Pubmed]
  10. Pepscan mapping and fusion-related properties of the major phosphatidylserine-binding domain of the glycoprotein of viral hemorrhagic septicemia virus, a salmonid rhabdovirus. Estepa, A., Coll, J.M. Virology (1996) [Pubmed]
  11. Detection of hemorrhagic septicemia virus of salmonid fishes by use of an enzyme-linked immunosorbent assay containing high sodium chloride concentration and two noncompetitive monoclonal antibodies against early viral nucleoproteins. Sanz, F.A., Coll, J.M. Am. J. Vet. Res. (1992) [Pubmed]
  12. Antibody response in salmonids against the 70 kDa serine protease of Aeromonas salmonicida studied by a monoclonal antibody-based ELISA. Wagner, U., Hädge, D., Gudmundsdóttir, B.K., Nold, K., Drössler, K. Vet. Immunol. Immunopathol. (2001) [Pubmed]
  13. Antiviral activity and its mechanism of guanine 7-N-oxide on DNA and RNA viruses derived from salmonid. Hasobe, M., Saneyoshi, M., Isono, K. J. Antibiot. (1985) [Pubmed]
  14. Toxicity of a phytosterol mixture to grayling (Thymallus thymallus) during early developmental stages. Honkanen, J.O., Kostamo, A., Kukkonen, J.V. Arch. Environ. Contam. Toxicol. (2005) [Pubmed]
  15. Molecular evolution of transferrin: evidence for positive selection in salmonids. Ford, M.J. Mol. Biol. Evol. (2001) [Pubmed]
  16. Distribution of the salmonid Hpa 1 family in the salmonid species demonstrated by in vitro runoff transcription assay of total genomic DNA: a procedure to estimate repetitive frequency and sequence divergence of a certain repetitive family with a few known sequences. Koishi, R., Okada, N. J. Mol. Evol. (1991) [Pubmed]
  17. Regulation of ovarian steroidogenesis in vitro by follicle-stimulating hormone and luteinizing hormone during sexual maturation in salmonid fish. Planas, J.V., Athos, J., Goetz, F.W., Swanson, P. Biol. Reprod. (2000) [Pubmed]
  18. Embryonic development of gonadotropin-releasing hormone neurons in the sockeye salmon. Parhar, I.S., Iwata, M., Pfaff, D.W., Schwanzel-Fukuda, M. J. Comp. Neurol. (1995) [Pubmed]
  19. Molecular cloning and characterization of a constitutively expressed heat-shock-cognate hsc71 gene from rainbow trout. Zafarullah, M., Wisniewski, J., Shworak, N.W., Schieman, S., Misra, S., Gedamu, L. Eur. J. Biochem. (1992) [Pubmed]
  20. Regulation of oocyte growth and maturation in fish. Nagahama, Y., Yoshikuni, M., Yamashita, M., Tokumoto, T., Katsu, Y. Curr. Top. Dev. Biol. (1995) [Pubmed]
  21. Utilization of the bone/liver alkaline phosphatase activity ratio in blood plasma as an indicator of ascorbate deficiency in salmonid fish. Matusiewicz, M., Dabrowski, K. Proc. Soc. Exp. Biol. Med. (1996) [Pubmed]
  22. Cortisol mediated suppression of salmonid lymphocyte responses in vitro. Tripp, R.A., Maule, A.G., Schreck, C.B., Kaattari, S.L. Dev. Comp. Immunol. (1987) [Pubmed]
  23. Steroids involved with final oocyte maturation in the winter flounder. Truscott, B., So, Y.P., Nagler, J.J., Idler, D.R. J. Steroid Biochem. Mol. Biol. (1992) [Pubmed]
  24. Effects of potassium and osmolality on spermatozoan motility of salmonid fishes. Morisawa, M., Suzuki, K., Morisawa, S. J. Exp. Biol. (1983) [Pubmed]
  25. Use of a bacteriophage-derived endo-N-acetylneuraminidase and an equine antipolysialyl antibody to characterize the polysialyl residues in salmonid fish egg polysialoglycoproteins. Substrate and immunospecificity studies. Kitajima, K., Inoue, S., Inoue, Y., Troy, F.A. J. Biol. Chem. (1988) [Pubmed]
  26. Lactate dehydrogenase isozymes of salmonid fish. Evidence for unique and rapid functional divergence of duplicated H-4 lactate dehydrogenases. Lim, S.T., Kay, R.M., Bailey, G.S. J. Biol. Chem. (1975) [Pubmed]
  27. Structural diversity in the alpha 2-->8-linked polysialic acid chains in salmonid fish egg glycoproteins. Occurrence of poly(Neu5Ac), poly(Neu5Gc), poly(Neu5Ac, Neu5Gc), poly(KDN), and their partially acetylated forms. Sato, C., Kitajima, K., Tazawa, I., Inoue, Y., Inoue, S., Troy, F.A. J. Biol. Chem. (1993) [Pubmed]
  28. Nucleotide sequence and tissue distribution of three insulin-like growth factor I prohormones in salmon. Duguay, S.J., Park, L.K., Samadpour, M., Dickhoff, W.W. Mol. Endocrinol. (1992) [Pubmed]
  29. Cell biology of somatolactin. Kaneko, T. Int. Rev. Cytol. (1996) [Pubmed]
  30. Serum amyloid A transcription in Atlantic salmon (Salmo salar L.) hepatocytes is enhanced by stimulation with macrophage factors, recombinant human IL-1 beta, IL-6 and TNF alpha or bacterial lipopolysaccharide. Jørgensen, J.B., Lunde, H., Jensen, L., Whitehead, A.S., Robertsen, B. Dev. Comp. Immunol. (2000) [Pubmed]
  31. Transgene and host growth hormone gene expression in pituitary and nonpituitary tissues of normal and growth hormone transgenic salmon. Mori, T., Devlin, R.H. Mol. Cell. Endocrinol. (1999) [Pubmed]
  32. Cytochrome b and 16S rRNA sequence variation in the Salmo trutta (Salmonidae, Teleostei) species complex. Patarnello, T., Bargelloni, L., Caldara, F., Colombo, L. Mol. Phylogenet. Evol. (1994) [Pubmed]
  33. Production of recombinant insulin-like growth factor-II in the development of a radioimmunoassay in rainbow trout (Oncorhynchus mykiss). Gentil, V., Martin, P., Smal, J., Le Bail, P.Y. Gen. Comp. Endocrinol. (1996) [Pubmed]
  34. Topographic bulbar projections and dual neural pathways of the primary olfactory neurons in salmonid fishes. Hara, T.J., Zhang, C. Neuroscience (1998) [Pubmed]
  35. Hydropathy profiles of predicted thyrotropin-releasing hormone precursors are highly conserved despite low similarity of primary structures. Ohide, A., Ando, H., Yanagisawa, T., Urano, A. J. Neuroendocrinol. (1996) [Pubmed]
  36. An homologous radioimmunoassay for coho salmon (Oncorhynchus kisutch) vitellogenin, with general applicability to other Pacific salmonids. Benfey, T.J., Donaldson, E.M., Owen, T.G. Gen. Comp. Endocrinol. (1989) [Pubmed]
  37. Determination and characterization of chloroguaiacol conjugates in fish bile by HPLC. Oikari, A.O., Baram, G.I., Evstafyev, V.K., Grachev, M.A. Environ. Pollut. (1988) [Pubmed]
  38. Abundant insulin-like growth factor-1 (IGF-1) receptor binding in fish skeletal muscle. Párrizas, M., Plisetskaya, E.M., Planas, J., Gutiérrez, J. Gen. Comp. Endocrinol. (1995) [Pubmed]
WikiGenes - Universities