The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)



Gene Review

CD80  -  CD80 molecule

Homo sapiens

Synonyms: Activation B7-1 antigen, B7, B7-1, B7.1, BB1, ...
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of CD80


Psychiatry related information on CD80


High impact information on CD80

  • First, thanks to the innate immune system's regulation of the main costimulatory molecules CD80 and CD86, the immune system rarely mistakes a pathogen for a self-antigen [7].
  • Inhibition of B7-CD28 interactions blocks immune responses in vitro and in vivo [8].
  • Using this assay, we demonstrate that EBV persists, in the peripheral blood of all seropositive individuals tested, in CD19+, CD23-, and CD80 (B7)- B cells [9].
  • Blocking the B7 and TGF-beta pathways prevents the CNS-specific generation of T(reg) cells [10].
  • Eradication of systemic B-cell tumors by genetically targeted human T lymphocytes co-stimulated by CD80 and interleukin-15 [11].

Chemical compound and disease context of CD80


Biological context of CD80


Anatomical context of CD80


Associations of CD80 with chemical compounds

  • Adenosine also increased LPS-induced CD54, CD80, MHC class I, and HLA-DR molecule expression in mDCs [27].
  • Collectively, these findings suggest that allergen-specific alphabeta T cells are resident in asthmatic bronchial tissue and demonstrate that costimulation by both CD80 and CD86 is essential for allergen-induced cytokine production [28].
  • Blocking experiments indicated that although bound C3 and CR2 were required to mediate IC binding to B cells, induction of CD80 expression required the secondary ligation of IC-associated IgG to B cell FcRII (CD32) [29].
  • CD80 binding polyproline helical peptide inhibits T cell activation [30].
  • In addition, the association of phosphoinositide 3-kinase with CD28 and enhanced tyrosine phosphorylation of phospholipase Cgamma were seen after anti-CD28 mAb and CHO-CD80 stimulation but to a much lesser extent after CHO-CD86 stimulation [31].

Physical interactions of CD80

  • CD80 can provide a critical costimulatory signal to T cells by interacting with the T cell surface molecule CD28 [19].
  • Competition ELISA experiments showed that they recognize CD152 in its native configuration and bound to different epitopes from the CD80/CD86 interaction site [32].
  • Decreased expression of B7 costimulatory molecules and major histocompatibility complex class-I in human hepatocellular carcinoma [33].
  • Inhibition studies using the B7-binding fusion protein CTLA4Ig and antibodies against CD80 and CD86 demonstrate that CTLA4Ig and anti-CD86 inhibited influenza-specific T cell proliferation, interleukin (IL)-2 and interferon (IFN)-gamma production, and generation of influenza-specific CD8+ CTL [34].
  • These studies suggest: 1) that the MAb against BB-1 binds a functional epitope on a molecule distinct from B7 as detected on activated keratinocytes in vitro and in vivo and 2) that keratinocytes in skin and epithelial cells in thymus can express cell-surface molecules that might mediate T-cell co-stimulation via CD28 [35].

Regulatory relationships of CD80


Other interactions of CD80

  • Dendritic cells also constitutively express the accessory ligand for CD28, B7/BB1, which has not been previously identified on circulating leukocytes freshly isolated from peripheral blood [41].
  • RESULTS: CD58, but not CD80 or CD86, was observed to be expressed constitutively on both native IECs and in the IEC lines T84 and HT-29 [42].
  • HCMV infection induced no maturation of DCs; instead, it efficiently down-regulated the expression of surface major histocompatibility complex (MHC) class I, CD40, and CD80 molecules [43].
  • Expression of the co-stimulatory molecule BB-1, the ligands CTLA-4 and CD28 and their mRNAs in chronic inflammatory demyelinating polyneuropathy [44].
  • From our in vitro data we conclude that B7 molecules play an important role in the alloimmune surveillance of AML as suggested by the high B7 molecule dependency of IL-2 secretion [45].

Analytical, diagnostic and therapeutic context of CD80


  1. The role of CD40 and CD80 accessory cell molecules in dendritic cell-dependent HIV-1 infection. Pinchuk, L.M., Polacino, P.S., Agy, M.B., Klaus, S.J., Clark, E.A. Immunity (1994) [Pubmed]
  2. In vivo expression of B7-1 and B7-2 by follicular lymphoma cells can prevent induction of T-cell anergy but is insufficient to induce significant T-cell proliferation. Dorfman, D.M., Schultze, J.L., Shahsafaei, A., Michalak, S., Gribben, J.G., Freeman, G.J., Pinkus, G.S., Nadler, L.M. Blood (1997) [Pubmed]
  3. CpG stimulation of precursor B-lineage acute lymphoblastic leukemia induces a distinct change in costimulatory molecule expression and shifts allogeneic T cells toward a Th1 response. Reid, G.S., She, K., Terrett, L., Food, M.R., Trudeau, J.D., Schultz, K.R. Blood (2005) [Pubmed]
  4. Low surface expression of B7-1 (CD80) is an immunoescape mechanism of colon carcinoma. Tirapu, I., Huarte, E., Guiducci, C., Arina, A., Zaratiegui, M., Murillo, O., Gonzalez, A., Berasain, C., Berraondo, P., Fortes, P., Prieto, J., Colombo, M.P., Chen, L., Melero, I. Cancer Res. (2006) [Pubmed]
  5. NK cell triggering by the human costimulatory molecules CD80 and CD86. Wilson, J.L., Charo, J., Martín-Fontecha, A., Dellabona, P., Casorati, G., Chambers, B.J., Kiessling, R., Bejarano, M.T., Ljunggren, H.G. J. Immunol. (1999) [Pubmed]
  6. The costimulatory molecule B7 is expressed on human microglia in culture and in multiple sclerosis acute lesions. De Simone, R., Giampaolo, A., Giometto, B., Gallo, P., Levi, G., Peschle, C., Aloisi, F. J. Neuropathol. Exp. Neurol. (1995) [Pubmed]
  7. A trip through my life with an immunological theme. Janeway, C.A. Annu. Rev. Immunol. (2002) [Pubmed]
  8. The role of the CD28 receptor during T cell responses to antigen. Linsley, P.S., Ledbetter, J.A. Annu. Rev. Immunol. (1993) [Pubmed]
  9. A novel form of Epstein-Barr virus latency in normal B cells in vivo. Miyashita, E.M., Yang, B., Lam, K.M., Crawford, D.H., Thorley-Lawson, D.A. Cell (1995) [Pubmed]
  10. Neuron-mediated generation of regulatory T cells from encephalitogenic T cells suppresses EAE. Liu, Y., Teige, I., Birnir, B., Issazadeh-Navikas, S. Nat. Med. (2006) [Pubmed]
  11. Eradication of systemic B-cell tumors by genetically targeted human T lymphocytes co-stimulated by CD80 and interleukin-15. Brentjens, R.J., Latouche, J.B., Santos, E., Marti, F., Gong, M.C., Lyddane, C., King, P.D., Larson, S., Weiss, M., Rivière, I., Sadelain, M. Nat. Med. (2003) [Pubmed]
  12. Expression of costimulatory CD80/CD86-CD28/CD152 molecules in nasal mucosa of patients with perennial allergic rhinitis. Hattori, H., Okano, M., Yoshino, T., Akagi, T., Nakayama, E., Saito, C., Satoskar, A.R., Ogawa, T., Azuma, M., Nishizaki, K. Clin. Exp. Allergy (2001) [Pubmed]
  13. Hypoxia reduces CD80 expression on monocytes but enhances their LPS-stimulated TNF-alpha secretion. Lahat, N., Rahat, M.A., Ballan, M., Weiss-Cerem, L., Engelmayer, M., Bitterman, H. J. Leukoc. Biol. (2003) [Pubmed]
  14. Transmembrane signaling through CD80 (B7-1) induces growth arrest and cell spreading of human B lymphocytes accompanied by protein tyrosine phosphorylation. Hirokawa, M., Kuroki, J., Kitabayashi, A., Miura, A.B. Immunol. Lett. (1996) [Pubmed]
  15. Heterogeneity of CD80 gene transcription by human keratinocytes to allergens and irritants: relevance to allergic contact dermatitis in vivo. Wakem, P., Ramirez, F., Zlotnick, D., Gaspari, A.A. Journal of applied toxicology : JAT. (2004) [Pubmed]
  16. CD80 transfected human hepatocellular carcinoma cells activate cytotoxic T lymphocytes to target HCC cells with shared tumor antigens. Chan, R.C., Xie, Y. Oncol. Rep. (2004) [Pubmed]
  17. Functional interactions of T cells with endothelial cells: the role of CD40L-CD40-mediated signals. Yellin, M.J., Brett, J., Baum, D., Matsushima, A., Szabolcs, M., Stern, D., Chess, L. J. Exp. Med. (1995) [Pubmed]
  18. CD80 (B7-1) binds both CD28 and CTLA-4 with a low affinity and very fast kinetics. van der Merwe, P.A., Bodian, D.L., Daenke, S., Linsley, P., Davis, S.J. J. Exp. Med. (1997) [Pubmed]
  19. Identification of residues in the V domain of CD80 (B7-1) implicated in functional interactions with CD28 and CTLA4. Fargeas, C.A., Truneh, A., Reddy, M., Hurle, M., Sweet, R., Sékaly, R.P. J. Exp. Med. (1995) [Pubmed]
  20. CD34(+) acute myeloid and lymphoid leukemic blasts can be induced to differentiate into dendritic cells. Cignetti, A., Bryant, E., Allione, B., Vitale, A., Foa, R., Cheever, M.A. Blood (1999) [Pubmed]
  21. Enhanced effector and memory CTL responses generated by incorporation of receptor activator of NF-kappa B (RANK)/RANK ligand costimulatory molecules into dendritic cell immunogens expressing a human tumor-specific antigen. Wiethe, C., Dittmar, K., Doan, T., Lindenmaier, W., Tindle, R. J. Immunol. (2003) [Pubmed]
  22. A novel receptor involved in T-cell activation. Cocks, B.G., Chang, C.C., Carballido, J.M., Yssel, H., de Vries, J.E., Aversa, G. Nature (1995) [Pubmed]
  23. Expression of CD28 and CD86 by human eosinophils and role in the secretion of type 1 cytokines (interleukin 2 and interferon gamma): inhibition by immunoglobulin a complexes. Woerly, G., Roger, N., Loiseau, S., Dombrowicz, D., Capron, A., Capron, M. J. Exp. Med. (1999) [Pubmed]
  24. Decreased inducible expression of CD80 and CD86 in human monocytes after ultraviolet-B irradiation: its involvement in inactivation of allogenecity. Fujihara, M., Takahashi, T.A., Azuma, M., Ogiso, C., Maekawa, T.L., Yagita, H., Okumura, K., Sekiguchi, S. Blood (1996) [Pubmed]
  25. CD8 T-cell infiltration in extravascular tissues of patients with human immunodeficiency virus infection. Interleukin-15 upmodulates costimulatory pathways involved in the antigen-presenting cells-T-cell interaction. Agostini, C., Zambello, R., Facco, M., Perin, A., Piazza, F., Siviero, M., Basso, U., Bortolin, M., Trentin, L., Semenzato, G. Blood (1999) [Pubmed]
  26. B7-2-positive myeloma: incidence, clinical characteristics, prognostic significance, and implications for tumor immunotherapy. Pope, B., Brown, R.D., Gibson, J., Yuen, E., Joshua, D. Blood (2000) [Pubmed]
  27. Adenosine affects expression of membrane molecules, cytokine and chemokine release, and the T-cell stimulatory capacity of human dendritic cells. Panther, E., Corinti, S., Idzko, M., Herouy, Y., Napp, M., la Sala, A., Girolomoni, G., Norgauer, J. Blood (2003) [Pubmed]
  28. Essential role for both CD80 and CD86 costimulation, but not CD40 interactions, in allergen-induced Th2 cytokine production from asthmatic bronchial tissue: role for alphabeta, but not gammadelta, T cells. Jaffar, Z.H., Stanciu, L., Pandit, A., Lordan, J., Holgate, S.T., Roberts, K. J. Immunol. (1999) [Pubmed]
  29. Natural antibody and complement-mediated antigen processing and presentation by B lymphocytes. Thornton, B.P., Vĕtvicka, V., Ross, G.D. J. Immunol. (1994) [Pubmed]
  30. CD80 binding polyproline helical peptide inhibits T cell activation. Srinivasan, M., Lu, D., Eri, R., Brand, D.D., Haque, A., Blum, J.S. J. Biol. Chem. (2005) [Pubmed]
  31. CD80 and CD86 are not equivalent in their ability to induce the tyrosine phosphorylation of CD28. Slavik, J.M., Hutchcroft, J.E., Bierer, B.E. J. Biol. Chem. (1999) [Pubmed]
  32. Molecular characterization and applications of recombinant scFv antibodies to CD152 co-stimulatory molecule. Pistillo, M.P., Tazzari, P.L., Ellis, J.H., Ferrara, G.B. Tissue Antigens (2000) [Pubmed]
  33. Decreased expression of B7 costimulatory molecules and major histocompatibility complex class-I in human hepatocellular carcinoma. Fujiwara, K., Higashi, T., Nouso, K., Nakatsukasa, H., Kobayashi, Y., Uemura, M., Nakamura, S., Sato, S., Hanafusa, T., Yumoto, Y., Naito, I., Shiratori, Y. J. Gastroenterol. Hepatol. (2004) [Pubmed]
  34. Analysis of the costimulatory requirements for generating human virus-specific in vitro T helper and effector responses. Blazevic, V., Trubey, C.M., Shearer, G.M. J. Clin. Immunol. (2001) [Pubmed]
  35. Discordant expression of CD28 ligands, BB-1, and B7 on keratinocytes in vitro and psoriatic cells in vivo. Nickoloff, B.J., Mitra, R.S., Lee, K., Turka, L.A., Green, J., Thompson, C., Shimizu, Y. Am. J. Pathol. (1993) [Pubmed]
  36. Pre-B acute lymphoblastic leukemia cells may induce T-cell anergy to alloantigen. Cardoso, A.A., Schultze, J.L., Boussiotis, V.A., Freeman, G.J., Seamon, M.J., Laszlo, S., Billet, A., Sallan, S.E., Gribben, J.G., Nadler, L.M. Blood (1996) [Pubmed]
  37. CD40 ligation induced phenotypic and functional expression of CD80 by human cardiac microvascular endothelial cells. Jollow, K.C., Zimring, J.C., Sundstrom, J.B., Ansari, A.A. Transplantation (1999) [Pubmed]
  38. Synovial fluid transforming growth factor beta inhibits dendritic cell-T lymphocyte interactions in patients with chronic arthritis. Summers, K.L., O'Donnell, J.L., Heiser, A., Highton, J., Hart, D.N. Arthritis Rheum. (1999) [Pubmed]
  39. The heterogeneous expression of CD80, CD86 and other adhesion molecules on leukemia and lymphoma cells and their induction by interferon. Tsukada, N., Aoki, S., Maruyama, S., Kishi, K., Takahashi, M., Aizawa, Y. J. Exp. Clin. Cancer Res. (1997) [Pubmed]
  40. Porin of Shigella dysenteriae enhances mRNA levels for Toll-like receptor 2 and MyD88, up-regulates CD80 of murine macrophage, and induces the release of interleukin-12. Ray, A., Chatterjee, N.S., Bhattacharya, S.K., Biswas, T. FEMS Immunol. Med. Microbiol. (2003) [Pubmed]
  41. The B7/BB1 antigen provides one of several costimulatory signals for the activation of CD4+ T lymphocytes by human blood dendritic cells in vitro. Young, J.W., Koulova, L., Soergel, S.A., Clark, E.A., Steinman, R.M., Dupont, B. J. Clin. Invest. (1992) [Pubmed]
  42. Polarized expression and function of the costimulatory molecule CD58 on human intestinal epithelial cells. Framson, P.E., Cho, D.H., Lee, L.Y., Hershberg, R.M. Gastroenterology (1999) [Pubmed]
  43. Human cytomegalovirus inhibits maturation and impairs function of monocyte-derived dendritic cells. Moutaftsi, M., Mehl, A.M., Borysiewicz, L.K., Tabi, Z. Blood (2002) [Pubmed]
  44. Expression of the co-stimulatory molecule BB-1, the ligands CTLA-4 and CD28 and their mRNAs in chronic inflammatory demyelinating polyneuropathy. Murata, K., Dalakas, M.C. Brain (2000) [Pubmed]
  45. Regulation of CD80/B7-1 and CD86/B7-2 molecule expression in human primary acute myeloid leukemia and their role in allogenic immune recognition. Costello, R.T., Mallet, F., Sainty, D., Maraninchi, D., Gastaut, J.A., Olive, D. Eur. J. Immunol. (1998) [Pubmed]
  46. Endothelial cells modify the costimulatory capacity of transmigrating leukocytes and promote CD28-mediated CD4(+) T cell alloactivation. Denton, M.D., Geehan, C.S., Alexander, S.I., Sayegh, M.H., Briscoe, D.M. J. Exp. Med. (1999) [Pubmed]
  47. Chimeric co-stimulatory molecules that selectively act through CD28 or CTLA-4 on human T cells. Lazetic, S., Leong, S.R., Chang, J.C., Ong, R., Dawes, G., Punnonen, J. J. Biol. Chem. (2002) [Pubmed]
WikiGenes - Universities