The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
MeSH Review


Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Catfishes


Psychiatry related information on Catfishes

  • Fresh catfish (Clarias gariepinus) were subjected to different concentrations of sodium benzoate or potasium sorbate and smoked traditionally before evaluation for microbiological, chemical and organoleptic characteristics during ambient tropical storage [6].

High impact information on Catfishes

  • Following absorption of their yolk sacs, the catfish fry feed upon the fry of the host while still in its mouth [7].
  • Cyclic GMP-sensitive conductance in outer segment membrane of catfish cones [8].
  • To determine the subunit stoichiometry of CNG ion channels, we have coexpressed the 30 pS conductance bovine retinal channel (RET) with an 85 pS conductance chimeric retinal channel containing the catfish olfactory channel P region (RO133) [9].
  • L-glutamate suppresses HVA calcium current in catfish horizontal cells by raising intracellular proton concentration [10].
  • Protonation of histidine groups inhibits gating of the quisqualate/kainate channel protein in isolated catfish cone horizontal cells [11].

Chemical compound and disease context of Catfishes


Biological context of Catfishes

  • Amino acid sequence of catfish pancreatic somatostatin I [17].
  • E-box binding transcription factors of the class I basic helix-loop-helix family were cloned from a catfish B cell cDNA library in this study, and homologs of TF12/HEB were identified as the most highly represented E-proteins [18].
  • In transient expression assays, catfish Oct2 beta showed a marked preference for the octamer variant, ATGtAAAT, which occurs twice in the catfish enhancer [19].
  • The results suggest that the two somatostatin genes present in both anglerfish and catfish were the result of a gene duplication event in a common ancestor of anglerfish and catfish [20].
  • All receptors able to bind agonist were also able to activate phospholipase C. The catfish GnRH-R was phosphorylated after agonist-occupation and use of truncated mutants showed this phosphorylation to be within the carboxyl-terminal tail [21].

Anatomical context of Catfishes


Associations of Catfishes with chemical compounds

  • gamma-Aminobutyric acid: a neurotransmitter candidate for cone horizontal cells of the catfish retina [27].
  • Here, we have examined the cellular localization of NOS in the retinas of salamander, goldfish, and catfish using both an affinity-purified antiserum to brain NOS and NADPH diaphorase (NADPHd) histochemistry [28].
  • A comparison of catfish and human J chain amino acid analyses showed the former to have a higher content of serine, glycine, and phenylalanine and a lower content of aspartic acid, isoleucine, and arginine [29].
  • The high similarity defined with other vertebrate V regions readily allowed the catfish sequence to be divided into FR and CDR regions [30].
  • The bimodal gill(water)/gut(air)-breathing Amazonian catfish Hoplosternum littorale that frequents hypoxic habitats uses "mammalian" 2,3-diphosphoglycerate (DPG) in addition to "piscine" ATP and GTP as erythrocytic O(2) affinity modulators [31].

Gene context of Catfishes


Analytical, diagnostic and therapeutic context of Catfishes


  1. Two cases of lymphosarcoma in channel catfish exposed to N-methyl-N'-nitro-N-nitrosoguanidine. Chen, H.H., Brittelli, M.R., Muska, C.F. J. Natl. Cancer Inst. (1985) [Pubmed]
  2. Kinetic analysis of the in vitro inhibition, aging, and reactivation of brain acetylcholinesterase from rat and channel catfish by paraoxon and chlorpyrifos-oxon. Carr, R.L., Chambers, J.E. Toxicol. Appl. Pharmacol. (1996) [Pubmed]
  3. The Edwardsiella ictaluri O polysaccharide biosynthesis gene cluster and the role of O polysaccharide in resistance to normal catfish serum and catfish neutrophils. Lawrence, M.L., Banes, M.M., Azadi, P., Reeks, B.Y. Microbiology (Reading, Engl.) (2003) [Pubmed]
  4. Periovulatory changes in catfish ovarian oestradiol-17beta, oestrogen-2-hydroxylase and catechol-O-methyltransferase during GnRH analogue-induced ovulation and in vitro induction of oocyte maturation by catecholoestrogens. Senthilkumaran, B., Joy, K.P. J. Endocrinol. (2001) [Pubmed]
  5. Thyroid hormone modulation of brain in vivo tyrosine hydroxylase activity and kinetics in the female catfish Heteropneustes fossilis. Chaube, R., Joy, K.P. J. Endocrinol. (2003) [Pubmed]
  6. Control of microbiological quality and shelf-life of catfish (Clarias gariepinus) by chemical preservatives and smoking. Efiuvwevwere, B.J., Ajiboye, M.O. J. Appl. Bacteriol. (1996) [Pubmed]
  7. A brood parasitic catfish of mouthbrooding cichlid fishes in Lake Tanganyika. Sato, T. Nature (1986) [Pubmed]
  8. Cyclic GMP-sensitive conductance in outer segment membrane of catfish cones. Haynes, L., Yau, K.W. Nature (1985) [Pubmed]
  9. Subunit stoichiometry of cyclic nucleotide-gated channels and effects of subunit order on channel function. Liu, D.T., Tibbs, G.R., Siegelbaum, S.A. Neuron (1996) [Pubmed]
  10. L-glutamate suppresses HVA calcium current in catfish horizontal cells by raising intracellular proton concentration. Dixon, D.B., Takahashi, K., Copenhagen, D.R. Neuron (1993) [Pubmed]
  11. Protonation of histidine groups inhibits gating of the quisqualate/kainate channel protein in isolated catfish cone horizontal cells. Christensen, B.N., Hida, E. Neuron (1990) [Pubmed]
  12. Comparative sensitivity of embryo-larval toxicity assays with African catfish (Clarias gariepinus) and zebra fish (Danio rerio). Nguyen, L.T., Janssen, C.R. Environ. Toxicol. (2001) [Pubmed]
  13. A comparison of ovarian recrudescence in the catfish, Mystus tengara (Ham.), exposed to short photoperiods, to long photoperiods, and to melatonin. Saxena, P.K., Anand, K. Gen. Comp. Endocrinol. (1977) [Pubmed]
  14. Ascorbic acid supplementation of diet for reduction of deltamethrin induced stress in freshwater catfish Clarias gariepinus. Datta, M., Kaviraj, A. Chemosphere (2003) [Pubmed]
  15. Effect of ascorbic acid on the immune response of the catfish, Mystus gulio (Hamilton), to different bacterins of Aeromonas hydrophila. Anbarasu, K., Chandran, M.R. Fish Shellfish Immunol. (2001) [Pubmed]
  16. Toxicity bioassay of technical and commercial formulations of carbaryl to the freshwater catfish, Clarias batrachus. Tripathi, G., Shukla, S.P. Ecotoxicol. Environ. Saf. (1988) [Pubmed]
  17. Amino acid sequence of catfish pancreatic somatostatin I. Oyama, H., Bradshaw, R.A., Bates, O.J., Permutt, A. J. Biol. Chem. (1980) [Pubmed]
  18. Evolution of transcriptional control of the IgH locus: characterization, expression, and function of TF12/HEB homologs of the catfish. Hikima, J., Cioffi, C.C., Middleton, D.L., Wilson, M.R., Miller, N.W., Clem, L.W., Warr, G.W. J. Immunol. (2004) [Pubmed]
  19. Characterization of Oct2 from the channel catfish: functional preference for a variant octamer motif. Ross, D.A., Magor, B.G., Middleton, D.L., Wilson, M.R., Miller, N.W., Clem, L.W., Warr, G.W. J. Immunol. (1998) [Pubmed]
  20. Structure and evolution of somatostatin genes. Su, C.J., White, J.W., Li, W.H., Luo, C.C., Frazier, M.L., Saunders, G.F., Chan, L. Mol. Endocrinol. (1988) [Pubmed]
  21. Pivotal role for the cytoplasmic carboxyl-terminal tail of a nonmammalian gonadotropin-releasing hormone receptor in cell surface expression, ligand binding, and receptor phosphorylation and internalization. Blomenröhr, M., Heding, A., Sellar, R., Leurs, R., Bogerd, J., Eidne, K.A., Willars, G.B. Mol. Pharmacol. (1999) [Pubmed]
  22. Myosins of secretory tissues. Ostlund, R.E., Leung, J.T., Kipnis, D.M. J. Cell Biol. (1978) [Pubmed]
  23. Dopamine induces neurite retraction in retinal horizontal cells via diacylglycerol and protein kinase C. Rodrigues, P.d.o.s. .S., Dowling, J.E. Proc. Natl. Acad. Sci. U.S.A. (1990) [Pubmed]
  24. Isolation and structures of glucagon and glucagon-like peptide from catfish pancreas. Andrews, P.C., Ronner, P. J. Biol. Chem. (1985) [Pubmed]
  25. Isolation and structure of a peptide hormone predicted from a mRNA sequence. A second somatostatin from the catfish pancreas. Andrews, P.C., Dixon, J.E. J. Biol. Chem. (1981) [Pubmed]
  26. Characterization of three corticotropin-releasing factor receptors in catfish: a novel third receptor is predominantly expressed in pituitary and urophysis. Arai, M., Assil, I.Q., Abou-Samra, A.B. Endocrinology (2001) [Pubmed]
  27. gamma-Aminobutyric acid: a neurotransmitter candidate for cone horizontal cells of the catfish retina. Lam, D.M., Lasater, E.M., Naka, K.I. Proc. Natl. Acad. Sci. U.S.A. (1978) [Pubmed]
  28. Nitric oxide synthase in Müller cells and neurons of salamander and fish retina. Liepe, B.A., Stone, C., Koistinaho, J., Copenhagen, D.R. J. Neurosci. (1994) [Pubmed]
  29. Identification and properties of J chain isolated from catfish macroglobulin. Mestecky, J., Kulhavy, R., Schrohenloher, R.E., Tomana, M., Wright, G.P. J. Immunol. (1975) [Pubmed]
  30. Nucleotide sequence of channel catfish heavy chain cDNA and genomic blot analyses. Implications for the phylogeny of Ig heavy chains. Ghaffari, S.H., Lobb, C.J. J. Immunol. (1989) [Pubmed]
  31. Isohemoglobin differentiation in the bimodal-breathing amazon catfish Hoplosternum littorale. Weber, R.E., Fago, A., Val, A.L., Bang, A., Van Hauwaert, M.L., Dewilde, S., Zal, F., Moens, L. J. Biol. Chem. (2000) [Pubmed]
  32. Addition of catfish gonadotropin-releasing hormone (GnRH) receptor intracellular carboxyl-terminal tail to rat GnRH receptor alters receptor expression and regulation. Lin, X., Janovick, J.A., Brothers, S., Blömenrohr, M., Bogerd, J., Conn, P.M. Mol. Endocrinol. (1998) [Pubmed]
  33. Discrepancy between molecular structure and ligand selectivity of a testicular follicle-stimulating hormone receptor of the African catfish (Clarias gariepinus). Bogerd, J., Blomenröhr, M., Andersson, E., van der Putten, H.H., Tensen, C.P., Vischer, H.F., Granneman, J.C., Janssen-Dommerholt, C., Goos, H.J., Schulz, R.W. Biol. Reprod. (2001) [Pubmed]
  34. P-glycoprotein in the catfish intestine: inducibility by xenobiotics and functional properties. Doi, A.M., Holmes, E., Kleinow, K.M. Aquat. Toxicol. (2001) [Pubmed]
  35. The nucleotide targets of somatic mutation and the role of selection in immunoglobulin heavy chains of a teleost fish. Yang, F., Waldbieser, G.C., Lobb, C.J. J. Immunol. (2006) [Pubmed]
  36. Regulation of steady-state luteinizing hormone messenger ribonucleic acid levels, de novo synthesis, and release by sex steroids in primary pituitary cell cultures of male African catfish, Clarias gariepinus. Rebers, F.E., Hassing, G.A., Zandbergen, M.A., Goos, H.J., Schulz, R.W. Biol. Reprod. (2000) [Pubmed]
  37. Determination of antipyrine in catfish plasma by high-performance liquid chromatography. Kitzman, J.V., Martin, J.F., Holley, J.H., Huber, W.G. J. Chromatogr. (1988) [Pubmed]
WikiGenes - Universities