The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Chemical Compound Review

Folithion     dimethoxy-(3-methyl-4-nitro- phenoxy)...

Synonyms: Fenition, Metation, Metathion, Nitrophos, Sumithion, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Sumithion

 

Psychiatry related information on Sumithion

  • Decreases in body weight, overt cholinergic signs, loss of many reflexes, changes in measures of motor activity and, later, indices of ataxia were observed at various times after onset of treatment with the two higher doses of fenitrothion [6].
 

High impact information on Sumithion

 

Chemical compound and disease context of Sumithion

 

Biological context of Sumithion

 

Anatomical context of Sumithion

  • There was no significant change in plasma or red blood cell cholinesterase activity with repeated dosing at either dosage level of fenitrothion, and there were no significant abnormalities detected on biochemical or hematologic monitoring [7].
  • Mutagenicity of sumithion tested in Drosophila somatic and germ cells [17].
  • Both fenitrothion and the reference antiandrogen flutamide caused significant decreases in the ventral prostate, seminal vesicle, and levator ani plus bulbocavernosus muscles tissue weights [18].
  • Comparative toxic effect of sumithion on rat and pigeon at the level of myelin [14].
  • Significant (P less than 0.001) depressions in hepatopancreas glycogen and total carbohydrates and elevations of phosphorylase and transaminases were observed in sumithion-stressed crabs when compared with controls [19].
 

Associations of Sumithion with other chemical compounds

 

Gene context of Sumithion

  • Fenitrothion had the highest affinity to AR [24].
  • 31P NMR and UV-vis spectrometric evidence has revealed an unexpected regioselectivity in the reaction of fenitrothion, 1, an organophosphorus pesticide, with the cetyltrimethylammonium (CTA) surfactants CTAOH and CTAMINA, that incorporate the reactive counterions OH(-) and MINA(-) (the anti-pyruvaldehyde 1-oximate anion) [25].
  • In contrast, blood acetylcholinesterase activity, a standard biomarker of organophosphate poisoning, was only inhibited at the higher dose of fenitrothion (30 mg/kg) [18].
  • Androgen receptor antagonism by the organophosphate insecticide fenitrothion [18].
  • The effect of the liposoluble organophosphorus insecticide fenitrothion (FS) on lipid packing and rotation of two crustacean plasma HDL was investigated [26].
 

Analytical, diagnostic and therapeutic context of Sumithion

  • An unblinded crossover study of fenitrothion 0.18 mg/kg/day [36 times the acceptable daily intake (ADI)] and 0.36 mg/kg/day (72 X ADI) administered as two daily divided doses for 4 days in 12 human volunteers was designed and undertaken after results from a pilot study [7].
  • This methodology was developed to evaluate the persistence of fenitrothion in forest atmospheres after treatment [27].
  • Determination of impurities in pesticides and their degradation products formed during the wine-making process by solid-phase extraction and gas chromatography with detection by electron impact mass spectrometry. I. Vinclozoline, procymidone and fenitrothion [28].
  • Solid-phase microextraction coupled with high performance liquid chromatography using on-line diode-array and electrochemical detection for the determination of fenitrothion and its main metabolites in environmental water samples [29].
  • To evaluate the potential risk of pulmonary damage due to aerial spraying of the insecticide fenitrothion, rat lungs were examined under light and electron microscopy at 3, 7, 21, and 60 days after exposure [30].

References

  1. p-Coumaroylnoradrenaline, a novel plant metabolite implicated in tomato defense against pathogens. Von Roepenack-Lahaye, E., Newman, M.A., Schornack, S., Hammond-Kosack, K.E., Lahaye, T., Jones, J.D., Daniels, M.J., Dow, J.M. J. Biol. Chem. (2003) [Pubmed]
  2. Involvement of two plasmids in fenitrothion degradation by Burkholderia sp. strain NF100. Hayatsu, M., Hirano, M., Tokuda, S. Appl. Environ. Microbiol. (2000) [Pubmed]
  3. Morphological assessment of fenitrothion pulmonary toxicity in the rat. Chevalier, G., Bastié-Sigeac, I., Côté, M.G. Toxicol. Appl. Pharmacol. (1982) [Pubmed]
  4. Mutagenicity studies on fenitrothion in bacteria and mammalian cells. Hara, M., Kogiso, S., Yamada, F., Kawamoto, M., Yoshitake, A., Miyamoto, J. Mutat. Res. (1989) [Pubmed]
  5. Sumithion induced neurotoxicity in pigeons: effect on lipid metabolism of spinal cord. Nag, A., Ghosh, J.J. Neurosci. Lett. (1984) [Pubmed]
  6. Behavioral toxicity of chronic administration of fenitrothion in rats. Rondeau, D.B., Young, L., Hebert, D., Trottier, B.L. Neurobehavioral toxicology and teratology. (1981) [Pubmed]
  7. Fenitrothion: toxicokinetics and toxicologic evaluation in human volunteers. Meaklim, J., Yang, J., Drummer, O.H., Killalea, S., Staikos, V., Horomidis, S., Rutherford, D., Ioannides-Demos, L.L., Lim, S., McLean, A.J., McNeil, J.J. Environ. Health Perspect. (2003) [Pubmed]
  8. Interaction of organophosphate pesticides and related compounds with the androgen receptor. Tamura, H., Yoshikawa, H., Gaido, K.W., Ross, S.M., DeLisle, R.K., Welsh, W.J., Richard, A.M. Environ. Health Perspect. (2003) [Pubmed]
  9. Inhibition and induction of cytochrome P450 isoenzymes in rat lung. Verschoyle, R.D., Dinsdale, D., Wolf, C.R. J. Pharmacol. Exp. Ther. (1993) [Pubmed]
  10. Anti-androgenic activity of 3-methyl-4-nitrophenol in diesel exhaust particles. Li, C., Taneda, S., Suzuki, A.K., Furuta, C., Watanabe, G., Taya, K. Eur. J. Pharmacol. (2006) [Pubmed]
  11. Bioconcentration and metabolism of DDT, fenitrothion and chlorpyrifos by the blue-green algae Anabaena sp. and Aulosira fertilissima. Lal, S., Lal, R., Saxena, D.M. Environ. Pollut. (1987) [Pubmed]
  12. Prospective study comparing fipronil with dichlorvos/fenitrothion and methoprene/pyrethrins in control of flea bite hypersensitivity in cats. Harvey, R.G., Penaliggon, E.J., Gautier, P. Vet. Rec. (1997) [Pubmed]
  13. Effects of cholinesterase reactivators and atropine on fenitrothion-induced hypothermia in Bubalus bubalis. Malik, J.K., Srivastava, A.K. Toxicol. Lett. (1987) [Pubmed]
  14. Comparative toxic effect of sumithion on rat and pigeon at the level of myelin. Nag, A., Ghosh, J.J. Neurosci. Lett. (1985) [Pubmed]
  15. Effects of in utero exposure to the organophosphate insecticide fenitrothion on androgen-dependent reproductive development in the Crl:CD(SD)BR rat. Turner, K.J., Barlow, N.J., Struve, M.F., Wallace, D.G., Gaido, K.W., Dorman, D.C., Foster, P.M. Toxicol. Sci. (2002) [Pubmed]
  16. Testing of Endosulfan and Fenitrothion for genotoxicity in Saccharomyces cerevisiae. Yadav, A.S., Vashishat, R.K., Kakar, S.N. Mutat. Res. (1982) [Pubmed]
  17. Mutagenicity of sumithion tested in Drosophila somatic and germ cells. Tripathy, N.K., Patnaik, K.K. Mutat. Res. (1991) [Pubmed]
  18. Androgen receptor antagonism by the organophosphate insecticide fenitrothion. Tamura, H., Maness, S.C., Reischmann, K., Dorman, D.C., Gray, L.E., Gaido, K.W. Toxicol. Sci. (2001) [Pubmed]
  19. Changes in hemolymph glucose, hepatopancreas glycogen, total carbohydrates, phosphorylase and amino transferases of sumithion-stressed freshwater rice-field crab (Oziotelphusa senex senex). Bhagyalakshmi, A., Sreenivasula Reddy, P., Ramamurthi, R. Toxicol. Lett. (1983) [Pubmed]
  20. Resistance of Aedes aegypti to organophosphates in several municipalities in the State of Rio de Janeiro and Espírito Santo, Brazil. Lima, J.B., Da-Cunha, M.P., Da Silva, R.C., Galardo, A.K., Soares, S.d.a. .S., Braga, I.A., Ramos, R.P., Valle, D. Am. J. Trop. Med. Hyg. (2003) [Pubmed]
  21. Confirmation method for the identification and determination of some organophosphorus and organochlorine pesticides in cocoa beans by gas chromatography-mass spectrometry. Rodríguez, P., Permanyer, J., Grases, J.M., González, C. J. Chromatogr. (1991) [Pubmed]
  22. Micellar catalyzed degradation of fenitrothion, an organophosphorus pesticide, in solution and soils. Balakrishnan, V.K., Buncel, E., Vanloon, G.W. Environ. Sci. Technol. (2005) [Pubmed]
  23. Stability of pesticides stored on polymeric solid-phase extraction cartridges. Ferrer, I., Barceló, D. Journal of chromatography. A. (1997) [Pubmed]
  24. Estimation of estrogenic and antiestrogenic activities of selected pesticides by MCF-7 cell proliferation assay. Okubo, T., Yokoyama, Y., Kano, K., Soya, Y., Kano, I. Arch. Environ. Contam. Toxicol. (2004) [Pubmed]
  25. Acceleration of nucleophilic attack on an organophosphorothioate neurotoxin, fenitrothion, by reactive counterion cationic micelles. Regioselectivity as a probe of substrate orientation within the micelle. Balakrishnan, V.K., Han, X., VanLoon, G.W., Dust, J.M., Toullec, J., Buncel, E. Langmuir : the ACS journal of surfaces and colloids. (2004) [Pubmed]
  26. Effect of fenitrothion on the physical properties of crustacean lipoproteins. Garcia, C.F., Cunningham, M., González-Baró, M.R., Garda, H., Pollero, R. Lipids (2002) [Pubmed]
  27. Optimization and validation of a method of analysis for fenitrothion and its main metabolites in forestry air samples using sorbent tubes with thermal desorption cold trap injection and gas chromatography-mass spectrometry. Baroja, O., Unceta, N., Sampedro, M.C., Goicolea, M.A., Barrio, R.J. Journal of chromatography. A. (2004) [Pubmed]
  28. Determination of impurities in pesticides and their degradation products formed during the wine-making process by solid-phase extraction and gas chromatography with detection by electron impact mass spectrometry. I. Vinclozoline, procymidone and fenitrothion. Jiménez, J.J., Bernal, J.L., Del Nozal, M.J., Arias, E., Bernal, J. Rapid Commun. Mass Spectrom. (2004) [Pubmed]
  29. Solid-phase microextraction coupled with high performance liquid chromatography using on-line diode-array and electrochemical detection for the determination of fenitrothion and its main metabolites in environmental water samples. Sánchez-Ortega, A., Sampedro, M.C., Unceta, N., Goicolea, M.A., Barrio, R.J. Journal of chromatography. A. (2005) [Pubmed]
  30. Pulmonary toxicity of aerosolized oil-formulated fenitrothion in rats. Chevalier, G., Hénin, J.P., Vannier, H., Canevet, C., Côté, M.G., Le Bouffant, L. Toxicol. Appl. Pharmacol. (1984) [Pubmed]
 
WikiGenes - Universities