The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 

Links

 

Gene Review

Lhb  -  luteinizing hormone beta

Mus musculus

Synonyms: LH, LH-B, LSH-B, LSH-beta, Luteinizing hormone subunit beta, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Lhb

 

Psychiatry related information on Lhb

 

High impact information on Lhb

  • Minimal data has been accumulated so far involving human mutations in the FSH beta, LH beta, or the gonadotropin receptor genes [6].
  • Follicle stimulating hormone (FSH) is a member of the glycoprotein hormone family that includes luteinzing hormone (LH), thyroid stimulating hormone, and chorionic gonadotropin [6].
  • Rare inactivating mutations that produce distinctive phenotypes of isolated LH or FSH deficiency have been discovered in gonadotropin subunit genes [7].
  • In addition, there is a common polymorphism in the LHbeta subunit gene with possible clinical significance as a contributing factor to pathologies of LH-dependent gonadal functions [7].
  • NGFI-A apparently influences female reproductive capacity through its regulation of LH-beta transcription [1].
 

Chemical compound and disease context of Lhb

 

Biological context of Lhb

 

Anatomical context of Lhb

 

Associations of Lhb with chemical compounds

  • These data were corroborated by assessing plasma levels of the respective peptide and steroid hormones. alphaERKO and alphabetaERKO females exhibited increased pituitary Cga and Lhb expression and increased plasma LH levels, whereas both were normal in betaERKO [21].
  • Although activins and inhibins regulate follicle-stimulating hormone (FSH) synthesis, no factor has been identified that exclusively regulates luteinizing hormone (LH) synthesis [1].
  • Due to decreased levels of LHbeta, female Egr1-deficient mice are anovulatory, have low levels of progesterone, and are infertile [12].
  • This dose of T, however, had little effect on LH in mice with a blank pellet in the AH [22].
  • In mice treated with melatonin the physiological dose of T significantly reduced the concentrations of LH in blood and pituitary (P less than 0.05) [22].
 

Physical interactions of Lhb

 

Regulatory relationships of Lhb

  • Addition of MIS to LbetaT2 cells stimulates the activity of the rat LHbeta gene promoter with as little as 1 microg/ml and in a dose-dependent manner [25].
  • Thus, Egr-1 is a likely transcriptional mediator of GnRH-induced signals for activation of the LHbeta gene [26].
  • LH promotes the amyloidogenic processing of the amyloid-beta precursor protein in vitro, and the antigonadotropin leuprolide acetate decreases amyloid generation in mice [3].
  • These data demonstrate that both ERalpha and ERbeta are involved in inhibiting LH levels at times of estrogen-negative feedback in vivo [27].
  • We also explored whether the MC4 receptor participates in tonic stimulation of steroid-induced LH and PRL surges [28].
 

Other interactions of Lhb

 

Analytical, diagnostic and therapeutic context of Lhb

References

  1. Luteinizing hormone deficiency and female infertility in mice lacking the transcription factor NGFI-A (Egr-1). Lee, S.L., Sadovsky, Y., Swirnoff, A.H., Polish, J.A., Goda, P., Gavrilina, G., Milbrandt, J. Science (1996) [Pubmed]
  2. Luteinizing hormone, a reproductive regulator that modulates the processing of amyloid-beta precursor protein and amyloid-beta deposition. Bowen, R.L., Verdile, G., Liu, T., Parlow, A.F., Perry, G., Smith, M.A., Martins, R.N., Atwood, C.S. J. Biol. Chem. (2004) [Pubmed]
  3. The gonadotropin connection in Alzheimer's disease. Meethal, S.V., Smith, M.A., Bowen, R.L., Atwood, C.S. Endocrine (2005) [Pubmed]
  4. Elevated luteinizing hormone induces expression of its receptor and promotes steroidogenesis in the adrenal cortex. Kero, J., Poutanen, M., Zhang, F.P., Rahman, N., McNicol, A.M., Nilson, J.H., Keri, R.A., Huhtaniemi, I.T. J. Clin. Invest. (2000) [Pubmed]
  5. Effects of galanin-like peptide (GALP) on locomotion, reproduction, and body weight in female and male mice. Kauffman, A.S., Buenzle, J., Fraley, G.S., Rissman, E.F. Hormones and behavior. (2005) [Pubmed]
  6. Follicle stimulating hormone is required for ovarian follicle maturation but not male fertility. Kumar, T.R., Wang, Y., Lu, N., Matzuk, M.M. Nat. Genet. (1997) [Pubmed]
  7. Mutations of gonadotropins and gonadotropin receptors: elucidating the physiology and pathophysiology of pituitary-gonadal function. Themmen APN, n.u.l.l., Huhtaniemi, I.T. Endocr. Rev. (2000) [Pubmed]
  8. Activation of luteinizing hormone beta gene by gonadotropin-releasing hormone requires the synergy of early growth response-1 and steroidogenic factor-1. Dorn, C., Ou, Q., Svaren, J., Crawford, P.A., Sadovsky, Y. J. Biol. Chem. (1999) [Pubmed]
  9. Consequences of elevated luteinizing hormone on diverse physiological systems: use of the LHbetaCTP transgenic mouse as a model of ovarian hyperstimulation-induced pathophysiology. Mann, R.J., Keri, R.A., Nilson, J.H. Recent Prog. Horm. Res. (2003) [Pubmed]
  10. Biologically active luteinizing hormone (LH) in Klinefelter's syndrome: response to gonadotropin-releasing hormone (GnRH) and effects of testosterone undecanoate. Montanini, V., Celani, M.F., Carani, C., Cioni, K., Simoni, M., Baraghini, G.F., Marrama, P. Andrologia (1987) [Pubmed]
  11. Extragonadal effects of luteinizing hormone in mice. Nomura, K., Puett, D.W., Puett, D., Shizume, K., Liddle, G.W. Acta Endocrinol. (1989) [Pubmed]
  12. Functional compensation by Egr4 in Egr1-dependent luteinizing hormone regulation and Leydig cell steroidogenesis. Tourtellotte, W.G., Nagarajan, R., Bartke, A., Milbrandt, J. Mol. Cell. Biol. (2000) [Pubmed]
  13. A steroidogenic factor-1 binding site is required for activity of the luteinizing hormone beta subunit promoter in gonadotropes of transgenic mice. Keri, R.A., Nilson, J.H. J. Biol. Chem. (1996) [Pubmed]
  14. Steroidogenic factor-1 and early growth response protein 1 act through two composite DNA binding sites to regulate luteinizing hormone beta-subunit gene expression. Halvorson, L.M., Ito, M., Jameson, J.L., Chin, W.W. J. Biol. Chem. (1998) [Pubmed]
  15. A novel activation function for NAB proteins in EGR-dependent transcription of the luteinizing hormone beta gene. Sevetson, B.R., Svaren, J., Milbrandt, J. J. Biol. Chem. (2000) [Pubmed]
  16. Activin induces x-zone apoptosis that inhibits luteinizing hormone-dependent adrenocortical tumor formation in inhibin-deficient mice. Beuschlein, F., Looyenga, B.D., Bleasdale, S.E., Mutch, C., Bavers, D.L., Parlow, A.F., Nilson, J.H., Hammer, G.D. Mol. Cell. Biol. (2003) [Pubmed]
  17. Steroid and pulsatile gonadotropin-releasing hormone (GnRH) regulation of luteinizing hormone and GnRH receptor in a novel gonadotrope cell line. Turgeon, J.L., Kimura, Y., Waring, D.W., Mellon, P.L. Mol. Endocrinol. (1996) [Pubmed]
  18. Analysis of ovarian gene expression in follicle-stimulating hormone beta knockout mice. Burns, K.H., Yan, C., Kumar, T.R., Matzuk, M.M. Endocrinology (2001) [Pubmed]
  19. The calcium component of gonadotropin-releasing hormone-stimulated luteinizing hormone subunit gene transcription is mediated by calcium/calmodulin-dependent protein kinase type II. Haisenleder, D.J., Ferris, H.A., Shupnik, M.A. Endocrinology (2003) [Pubmed]
  20. Dependence of uterine cyclooxygenase2 expression on luteinizing hormone signaling. Lin, D.X., Lei, Z.M., Rao, C.h.V. Biol. Reprod. (2005) [Pubmed]
  21. Characterization of the hypothalamic-pituitary-gonadal axis in estrogen receptor (ER) Null mice reveals hypergonadism and endocrine sex reversal in females lacking ERalpha but not ERbeta. Couse, J.F., Yates, M.M., Walker, V.R., Korach, K.S. Mol. Endocrinol. (2003) [Pubmed]
  22. Melatonin acts in the brain to mediate seasonal steroid inhibition of luteinizing hormone secretion in the white-footed mouse (Peromyscus leucopus). Glass, J.D., Dolan, P.L. Proc. Soc. Exp. Biol. Med. (1988) [Pubmed]
  23. Embryonic expression of the luteinizing hormone beta gene appears to be coupled to the transient appearance of p8, a high mobility group-related transcription factor. Quirk, C.C., Seachrist, D.D., Nilson, J.H. J. Biol. Chem. (2003) [Pubmed]
  24. Modulation of luteinizing hormone receptors: effect of an inhibitor of prolactin secretion, p-coumaric acid. Chowdhury, M., Kabir, S.N., Pal, A.K., Pakrashi, A. J. Endocrinol. (1983) [Pubmed]
  25. Regulation of gonadotropin gene expression by Mullerian inhibiting substance. Bédécarrats, G.Y., O'Neill, F.H., Norwitz, E.R., Kaiser, U.B., Teixeira, J. Proc. Natl. Acad. Sci. U.S.A. (2003) [Pubmed]
  26. Egr-1 is a downstream effector of GnRH and synergizes by direct interaction with Ptx1 and SF-1 to enhance luteinizing hormone beta gene transcription. Tremblay, J.J., Drouin, J. Mol. Cell. Biol. (1999) [Pubmed]
  27. Critical role for estrogen receptor alpha in negative feedback regulation of gonadotropin-releasing hormone mRNA expression in the female mouse. Dorling, A.A., Todman, M.G., Korach, K.S., Herbison, A.E. Neuroendocrinology (2003) [Pubmed]
  28. The melanocortin 4 receptor mediates leptin stimulation of luteinizing hormone and prolactin surges in steroid-primed ovariectomized rats. Watanobe, H., Schiöth, H.B., Wikberg, J.E., Suda, T. Biochem. Biophys. Res. Commun. (1999) [Pubmed]
  29. Immortalization of pituitary cells at discrete stages of development by directed oncogenesis in transgenic mice. Alarid, E.T., Windle, J.J., Whyte, D.B., Mellon, P.L. Development (1996) [Pubmed]
  30. Stimulation of luteinizing hormone beta gene promoter activity by the orphan nuclear receptor, steroidogenic factor-1. Halvorson, L.M., Kaiser, U.B., Chin, W.W. J. Biol. Chem. (1996) [Pubmed]
  31. Targeted ablation of cells in the pituitary primordia of transgenic mice. Burrows, H.L., Birkmeier, T.S., Seasholtz, A.F., Camper, S.A. Mol. Endocrinol. (1996) [Pubmed]
  32. Effect of steroid milieu on gonadotropin-releasing hormone-1 neuron firing pattern and luteinizing hormone levels in male mice. Pielecka, J., Moenter, S.M. Biol. Reprod. (2006) [Pubmed]
  33. Effects of acute stimulation with gonadotropin releasing hormone (GnRH) on biologically active serum luteinizing hormone (LH) in elderly men. Celani, M.F., Montanini, V., Baraghini, G.F., Carani, C., Marrama, P. J. Endocrinol. Invest. (1984) [Pubmed]
  34. Targeted ablation of gonadotrophs in transgenic mice depresses prolactin but not growth hormone gene expression at birth as measured by quantitative mRNA detection. Vankelecom, H., Seuntjens, E., Hauspie, A., Denef, C. J. Biomed. Sci. (2003) [Pubmed]
 
WikiGenes - Universities