The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)



Gene Review

PTPRO  -  protein tyrosine phosphatase, receptor...

Homo sapiens

Synonyms: GLEPP1, Glomerular epithelial protein 1, NPHS6, PTP-OC, PTP-U2, ...
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of PTPRO

  • Previous study in our laboratory demonstrated suppression of the gene for protein tyrosine phosphatase receptor-type O (PTPRO) in primary and established rat hepatomas [1].
  • Protein tyrosine phosphatase receptor-type O (PTPRO) exhibits characteristics of a candidate tumor suppressor in human lung cancer [1].
  • Glomeruli from human renal biopsies with crescentic nephritis showed focal to diffuse disappearance of GLEPP1 protein [2].
  • Synaptopodin expression correlated with the severity of proteinuria and with GLEPP1 expression [3].
  • GLEPP1 distribution pattern and absence from glomeruli of individuals with nephrotic syndrome may, therefore, represent a useful phenotypic marker [4].

High impact information on PTPRO


Chemical compound and disease context of PTPRO


Biological context of PTPRO

  • Overexpression of PTPRO in A549 cells inhibited anchorage-independent growth, delayed reentry of the cells into the cell cycle after release from cell-cycle arrest, and increased susceptibility of the cells to apoptosis [1].
  • The reduced expression of PTPRO in the primary lung tumors correlated with the methylation status of its CpG island [1].
  • Whereas the epithelial PTPRO includes an approximately 800-amino acid extracellular domain, the major (3 kb) PTPROt cDNA predicts a unique 5' untranslated region and truncated (8 amino acids) extracellular domain with a conserved transmembrane region and single catalytic domain [13].
  • The human PTPRO gene was assigned to human chromosome 1p35-pter using Southern blot analyses of genomic DNAs from rodent/human somatic hybrid cell lines containing human chromosome 1 or the p35-pter region of the chromosome [14].
  • In kidney and brain, gene expression of PTP-U2 was detected as a 5.4 kb mRNA and in lung and placenta as 3.5 kb [15].

Anatomical context of PTPRO

  • In fetal tissues, PTPRO expression was observed in the brain and lung, whereas lower levels were observed in the kidney [14].
  • In adult tissues, PTPRO was less restricted and was observed in the lung, heart, skeletal muscle, prostate, testis, and in various areas of the brain, indicating that PTPRO expression is developmentally regulated [14].
  • GLEPP1 PTPase protein is distributed to the podocyte foot processes themselves [16].
  • The GLEPP1 PTPase domain shows homology with two other single domain transmembrane PTPases (PTP beta and Drosophila central nervous system PTP10D) [16].
  • Histologic analysis of serial sections showed that the glomerular epithelial cells were linked to tubular epithelial cells, and some of these extended toward the medulla [17].

Associations of PTPRO with chemical compounds

  • A novel PTP, termed protein tyrosine phosphatase receptor omicron (PTPRO), which is related to the homotypically adhering kappa, mu and PCP-2 receptor-type tyrosine phosphatases, was identified and characterized [14].
  • Expression of synaptopodin and GLEPP1 as markers of steroid responsiveness in primary focal segmental glomerulosclerosis [3].
  • Glomerular visceral epithelial cells are endowed with a sialic acid-rich surface coat (the "glomerular epithelial polyanion"), which in rat tissue contains the sialoprotein podocalyxin [18].
  • These data indicate that xyloside induces a dramatic imbalance in the de novo-synthesized PGs of cellular and extracellular compartments and that cellular accumulation of xylosylated (sulfated) PGs selectively alters the Golgi apparatus of the glomerular epithelial cell, the cell that actively synthesizes PGs [19].
  • These results suggest that GBM CS-heparan sulfate proteoglycan alterations consisting of either decreased number and/or less anionic charge occur early in PAN and support a role for glomerular epithelial cell maintenance of GBM CS for normal glomerular function [9].
  • Treatment with tamoxifen increased PTPRO expression [20].

Co-localisations of PTPRO


Regulatory relationships of PTPRO


Other interactions of PTPRO


Analytical, diagnostic and therapeutic context of PTPRO


  1. Protein tyrosine phosphatase receptor-type O (PTPRO) exhibits characteristics of a candidate tumor suppressor in human lung cancer. Motiwala, T., Kutay, H., Ghoshal, K., Bai, S., Seimiya, H., Tsuruo, T., Suster, S., Morrison, C., Jacob, S.T. Proc. Natl. Acad. Sci. U.S.A. (2004) [Pubmed]
  2. Glomerular epithelial protein 1 and podocalyxin-like protein 1 in inflammatory glomerular disease (crescentic nephritis) in rabbit and man. Yang, D.H., Goyal, M., Sharif, K., Kershaw, D., Thomas, P., Dysko, R., Wiggins, R. Lab. Invest. (1996) [Pubmed]
  3. Expression of synaptopodin and GLEPP1 as markers of steroid responsiveness in primary focal segmental glomerulosclerosis. Hirakawa, M., Tsuruya, K., Yotsueda, H., Tokumoto, M., Ikeda, H., Katafuchi, R., Fujimi, S., Hirakata, H., Iida, M. Life Sci. (2006) [Pubmed]
  4. Podocyte phenotypes as defined by expression and distribution of GLEPP1 in the developing glomerulus and in nephrotic glomeruli from MCD, CNF, and FSGS. A dedifferentiation hypothesis for the nephrotic syndrome. Sharif, K., Goyal, M., Kershaw, D., Kunkel, R., Wiggins, R. Exp. Nephrol. (1998) [Pubmed]
  5. Glomerular epithelium: structural alterations induced by polycations. Seiler, M.W., Venkatachalam, M.A., Cotran, R.S. Science (1975) [Pubmed]
  6. Altered podocyte structure in GLEPP1 (Ptpro)-deficient mice associated with hypertension and low glomerular filtration rate. Wharram, B.L., Goyal, M., Gillespie, P.J., Wiggins, J.E., Kershaw, D.B., Holzman, L.B., Dysko, R.C., Saunders, T.L., Samuelson, L.C., Wiggins, R.C. J. Clin. Invest. (2000) [Pubmed]
  7. Characterization of a glomerular epithelial cell metalloproteinase as matrix metalloproteinase-9 with enhanced expression in a model of membranous nephropathy. McMillan, J.I., Riordan, J.W., Couser, W.G., Pollock, A.S., Lovett, D.H. J. Clin. Invest. (1996) [Pubmed]
  8. Glomerular epithelial cell changes after ischemia or dehydration. Possible role of angiotensin II. Racusen, L.C., Prozialeck, D.H., Solez, K. Am. J. Pathol. (1984) [Pubmed]
  9. Glomerular basement membrane anionic charge site changes early in aminonucleoside nephrosis. Mahan, J.D., Sisson-Ross, S., Vernier, R.L. Am. J. Pathol. (1986) [Pubmed]
  10. Glomerular epithelial cell arachidonate metabolism in Shiga toxin hemolytic uremic syndrome. Kaplan, B.S., Meyers, K.E., Leonard, M.B. Kidney Int. (2001) [Pubmed]
  11. Relationship between proteinuria and epithelial cell changes in minimal lesion glomerulopathy. Powell, H.R. Nephron (1976) [Pubmed]
  12. Nephrotoxicity: a rational approach to target cell injury in vitro in the kidney. Bach, P.H., Kwizera, E.N. Xenobiotica (1988) [Pubmed]
  13. PTPROt: an alternatively spliced and developmentally regulated B-lymphoid phosphatase that promotes G0/G1 arrest. Aguiar, R.C., Yakushijin, Y., Kharbanda, S., Tiwari, S., Freeman, G.J., Shipp, M.A. Blood (1999) [Pubmed]
  14. Characterization and chromosomal localization of PTPRO, a novel receptor protein tyrosine phosphatase, expressed in hematopoietic stem cells. Avraham, S., London, R., Tulloch, G.A., Ellis, M., Fu, Y., Jiang, S., White, R.A., Painter, C., Steinberger, A.A., Avraham, H. Gene (1997) [Pubmed]
  15. Cloning, expression and chromosomal localization of a novel gene for protein tyrosine phosphatase (PTP-U2) induced by various differentiation-inducing agents. Seimiya, H., Sawabe, T., Inazawa, J., Tsuruo, T. Oncogene (1995) [Pubmed]
  16. GLEPP1, a renal glomerular epithelial cell (podocyte) membrane protein-tyrosine phosphatase. Identification, molecular cloning, and characterization in rabbit. Thomas, P.E., Wharram, B.L., Goyal, M., Wiggins, J.E., Holzman, L.B., Wiggins, R.C. J. Biol. Chem. (1994) [Pubmed]
  17. Ex vivo regeneration of the murine kidney from human mesenchymal stem cells. Yokoo, T., Kawamura, T. Kidney Int. (2005) [Pubmed]
  18. Identification of a major sialoprotein in the glycocalyx of human visceral glomerular epithelial cells. Kerjaschki, D., Poczewski, H., Dekan, G., Horvat, R., Balzar, E., Kraft, N., Atkins, R.C. J. Clin. Invest. (1986) [Pubmed]
  19. Xylosylated-proteoglycan-induced Golgi alterations. Kanwar, Y.S., Rosenzweig, L.J., Jakubowski, M.L. Proc. Natl. Acad. Sci. U.S.A. (1986) [Pubmed]
  20. Estrogen-mediated suppression of the gene encoding protein tyrosine phosphatase PTPRO in human breast cancer: mechanism and role in tamoxifen sensitivity. Ramaswamy, B., Majumder, S., Roy, S., Ghoshal, K., Kutay, H., Datta, J., Younes, M., Shapiro, C.L., Motiwala, T., Jacob, S.T. Mol. Endocrinol. (2009) [Pubmed]
  21. Glomerular localization and expression of Angiotensin-converting enzyme 2 and Angiotensin-converting enzyme: implications for albuminuria in diabetes. Ye, M., Wysocki, J., William, J., Soler, M.J., Cokic, I., Batlle, D. J. Am. Soc. Nephrol. (2006) [Pubmed]
  22. Extracellular matrix regulates proliferation and phospholipid turnover in glomerular epithelial cells. Cybulsky, A.V., Bonventre, J.V., Quigg, R.J., Wolfe, L.S., Salant, D.J. Am. J. Physiol. (1990) [Pubmed]
  23. Human glomerular epithelial cell express CD4 and interaction with gp120 protein promotes PYK2 tyrosine phosphorylation. Kapasi, A.A., Franki, N., Ding, G., Singhal, P.C. Mol. Cell Biol. Res. Commun. (1999) [Pubmed]
  24. Molecular cloning of cDNAs encoding human GLEPP1, a membrane protein tyrosine phosphatase: characterization of the GLEPP1 protein distribution in human kidney and assignment of the GLEPP1 gene to human chromosome 12p12-p13. Wiggins, R.C., Wiggins, J.E., Goyal, M., Wharram, B.L., Thomas, P.E. Genomics (1995) [Pubmed]
  25. Evaluation of metanephric maturation in a human fetal kidney explant model. Matsell, D.G., Bennett, T. In Vitro Cell. Dev. Biol. Anim. (1998) [Pubmed]
WikiGenes - Universities