The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 

Links

 

Gene Review

Tat  -  tyrosine aminotransferase

Rattus norvegicus

Synonyms: L-tyrosine:2-oxoglutarate aminotransferase, TAT, Tyrosine aminotransferase
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Tat

  • To study the underlying regulatory mechanisms, the TAT structural gene was isolated from a lambda bacteriophage rat DNA library [1].
  • During development, this demethylation occurs before birth, at a stage where the Tat gene is not yet inducible, and it could thus prepare the enhancer for subsequent stimulation by hypoglycemia at birth [2].
  • Exposure of cultured neurons to the neurotoxic HIV proteins gp120 and Tat resulted in increased cellular levels of sphingomyelin, ceramide, and HNE [3].
  • The ceramide precursor palmitoyl-CoA sensitized neurons to Tat and gp120 toxicity, whereas an inhibitor of ceramide production reduced Tat and gp120-induced increases of ceramide and HNE and protected the neurons from Tat and gp120-induced death [3].
  • PTPmu wedge Tat peptide had no effect on PC12 cells but blocked the PTPmu-dependent phenotype of neurite outgrowth of retinal ganglion neurons on a PTPmu substrate, whereas LAR wedge peptide had no effect [4].
 

Psychiatry related information on Tat

 

High impact information on Tat

  • Using this property we have identified in vivo HNF5 bound to its sites within two glucocorticoid-responsive units of the rat tyrosine aminotransferase (TAT) gene [7].
  • All the identified protein contacts to DNA are found exclusively in the TAT-expressing hepatoma cells [8].
  • Surprisingly, all DNA-binding activities are present in nuclei of TAT-expressing and nonexpressing cells, indicating that the mere presence of factors is not sufficient for their interaction with a binding site in vivo [8].
  • Genomic sequencing reveals methylation of CpG dinucleotides in the regions analyzed in nonexpressing cells, whereas no methylation is found in TAT-expressing cells [8].
  • These cells induce tyrosine aminotransferase and MMTV in response to the synthetic glucocorticoid, dexamethasone [9].
 

Chemical compound and disease context of Tat

 

Biological context of Tat

 

Anatomical context of Tat

  • Spliced and unspliced viral transcripts were expressed in lymph nodes, thymus, liver, kidney, and spleen, suggesting that Tat and Rev are functional [17].
  • Several peptides, including penetratin and Tat, are known to translocate across the plasma membrane [18].
  • CEP1347 also enhanced survival of both rat and human neurons and inhibited the activation of human monocytes after exposure to Tat and gp120 [19].
  • 7. Effects of Tat were studied by using a stable Tat expressing RAW264.7 cell line or by addition of recombinant Tat protein to co-cultures [20].
  • Defining the pathway for Tat-mediated delivery of beta-glucuronidase in cultured cells and MPS VII mice [21].
 

Associations of Tat with chemical compounds

  • Tyrosine aminotransferase belongs to a superfamily of enzymes which includes aspartate aminotransferase and can be aligned so that many invariant, functional residues coincide [14].
  • Aggregation of neurons was inhibited by the addition of monoclonal antibodies directed against the RGD and basic domains of Tat, but not against the proline-rich domain [22].
  • Furthermore, kainate-induced neuronal loss in hippocampal CA1 and CA3 subregions was prevented by intracerebroventricular injection of Tat-Glur6 - 9c [23].
  • By contrast treatment of slice cultures with Tat in the absence of RAW264.7 cells was not neurotoxic [20].
  • Furthermore, cytogenetic data exhibited less chromosomal damage in Tat-producing cells after recovery from cisplatin treatment, corroborating electrophoretic data [24].
 

Physical interactions of Tat

 

Regulatory relationships of Tat

 

Other interactions of Tat

 

Analytical, diagnostic and therapeutic context of Tat

  • Membrane permeation peptides, such as Tat basic domain, have emerged as useful membrane transduction agents with potential utility in therapeutic delivery and diagnostic imaging [37].
  • Using a gel-shift assay and affinity chromatography on an L-arginine column we found that these compounds bind specifically to the transactivation responsive element RNA in vitro with Kd values in the range of 20-400 nM, which is comparable to the Kd of native Tat bound to the transactivation responsive element (10-12 nM) [38].
  • To explore the possibility that Tat can affect primary brain cells, we examined the effect of recombinant Tat protein on rat cortical brain cell cultures [39].
  • In this study we examined temporal progression of histopathological changes induced by a single microinjection of Tat 1-72 into the rat striatum [40].
  • Thus, the diminishing TAT effect on PPI at day 90 in a longitudinal study design was attributed to repeated testing, rather than 'recovery of function'. Collectively, the data suggested that hippocampal Tat injections in neonatal rats produced alterations in the pre-attentive process of sensorimotor gating, as indexed by PPI [41].

References

  1. Isolation and characterization of the rat tyrosine aminotransferase gene. Shinomiya, T., Scherer, G., Schmid, W., Zentgraf, H., Schütz, G. Proc. Natl. Acad. Sci. U.S.A. (1984) [Pubmed]
  2. Glucocorticoid-induced DNA demethylation and gene memory during development. Thomassin, H., Flavin, M., Espinás, M.L., Grange, T. EMBO J. (2001) [Pubmed]
  3. Perturbation of sphingolipid metabolism and ceramide production in HIV-dementia. Haughey, N.J., Cutler, R.G., Tamara, A., McArthur, J.C., Vargas, D.L., Pardo, C.A., Turchan, J., Nath, A., Mattson, M.P. Ann. Neurol. (2004) [Pubmed]
  4. Protein-tyrosine phosphatase (PTP) wedge domain peptides: a novel approach for inhibition of PTP function and augmentation of protein-tyrosine kinase function. Xie, Y., Massa, S.M., Ensslen-Craig, S.E., Major, D.L., Yang, T., Tisi, M.A., Derevyanny, V.D., Runge, W.O., Mehta, B.P., Moore, L.A., Brady-Kalnay, S.M., Longo, F.M. J. Biol. Chem. (2006) [Pubmed]
  5. Intraventricular injection of human immunodeficiency virus type 1 (HIV-1) tat protein causes inflammation, gliosis, apoptosis, and ventricular enlargement. Jones, M., Olafson, K., Del Bigio, M.R., Peeling, J., Nath, A. J. Neuropathol. Exp. Neurol. (1998) [Pubmed]
  6. Molecular biology and molecular pathology of a newly described molecular disease--tyrosinemia II (the Richner-Hanhart syndrome). Goldsmith, L.A. Exp. Cell Biol. (1978) [Pubmed]
  7. In vivo footprinting of rat TAT gene: dynamic interplay between the glucocorticoid receptor and a liver-specific factor. Rigaud, G., Roux, J., Pictet, R., Grange, T. Cell (1991) [Pubmed]
  8. Genomic footprinting reveals cell type-specific DNA binding of ubiquitous factors. Becker, P.B., Ruppert, S., Schütz, G. Cell (1987) [Pubmed]
  9. Isolation of glucocorticoid-unresponsive rat hepatoma cells by fluorescence-activated cell sorting. Grove, J.R., Dieckmann, B.S., Schroer, T.A., Ringold, G.M. Cell (1980) [Pubmed]
  10. Methamphetamine and human immunodeficiency virus protein Tat synergize to destroy dopaminergic terminals in the rat striatum. Theodore, S., Cass, W.A., Maragos, W.F. Neuroscience (2006) [Pubmed]
  11. Cytotoxic effects of exposure to the human immunodeficiency virus type 1 protein Tat in the hippocampus are enhanced by prior ethanol treatment. Self, R.L., Mulholland, P.J., Harris, B.R., Nath, A., Prendergast, M.A. Alcohol. Clin. Exp. Res. (2004) [Pubmed]
  12. "Superinduction" of tyrosine aminotransferase by actinomycin D: a reevaluation. Steinberg, R.A., Levinson, B.B., Tomkins, G.M. Cell (1975) [Pubmed]
  13. Hormonal induction of tyrosine aminotransferase activity in host liver and hepatoma no. 7777 of normal and cofactor-depleted animals. Tryfiates, G.P., Saus, F.L., Morris, H.P. J. Natl. Cancer Inst. (1975) [Pubmed]
  14. The structure of tyrosine aminotransferase. Evidence for domains involved in catalysis and enzyme turnover. Hargrove, J.L., Scoble, H.A., Mathews, W.R., Baumstark, B.R., Biemann, K. J. Biol. Chem. (1989) [Pubmed]
  15. Complete complementary DNA of rat tyrosine aminotransferase messenger RNA. Deduction of the primary structure of the enzyme. Grange, T., Guénet, C., Dietrich, J.B., Chasserot, S., Fromont, M., Befort, N., Jami, J., Beck, G., Pictet, R. J. Mol. Biol. (1985) [Pubmed]
  16. Involvement of conserved asparagine and arginine residues from the N-terminal region in the catalytic mechanism of rat liver and Trypanosoma cruzi tyrosine aminotransferases. Sobrado, V.R., Montemartini-Kalisz, M., Kalisz, H.M., De La Fuente, M.C., Hecht, H.J., Nowicki, C. Protein Sci. (2003) [Pubmed]
  17. An HIV-1 transgenic rat that develops HIV-related pathology and immunologic dysfunction. Reid, W., Sadowska, M., Denaro, F., Rao, S., Foulke, J., Hayes, N., Jones, O., Doodnauth, D., Davis, H., Sill, A., O'Driscoll, P., Huso, D., Fouts, T., Lewis, G., Hill, M., Kamin-Lewis, R., Wei, C., Ray, P., Gallo, R.C., Reitz, M., Bryant, J. Proc. Natl. Acad. Sci. U.S.A. (2001) [Pubmed]
  18. Translocation of dynorphin neuropeptides across the plasma membrane. A putative mechanism of signal transmission. Marinova, Z., Vukojevic, V., Surcheva, S., Yakovleva, T., Cebers, G., Pasikova, N., Usynin, I., Hugonin, L., Fang, W., Hallberg, M., Hirschberg, D., Bergman, T., Langel, U., Hauser, K.F., Pramanik, A., Aldrich, J.V., Gräslund, A., Terenius, L., Bakalkin, G. J. Biol. Chem. (2005) [Pubmed]
  19. Inhibition of mixed lineage kinase 3 prevents HIV-1 Tat-mediated neurotoxicity and monocyte activation. Sui, Z., Fan, S., Sniderhan, L., Reisinger, E., Litzburg, A., Schifitto, G., Gelbard, H.A., Dewhurst, S., Maggirwar, S.B. J. Immunol. (2006) [Pubmed]
  20. A soluble factor produced by macrophages mediates the neurotoxic effects of HIV-1 Tat in vitro. Brana, C., Biggs, T.E., Barton, C.H., Sundstrom, L.E., Mann, D.A. AIDS (1999) [Pubmed]
  21. Defining the pathway for Tat-mediated delivery of beta-glucuronidase in cultured cells and MPS VII mice. Orii, K.O., Grubb, J.H., Vogler, C., Levy, B., Tan, Y., Markova, K., Davidson, B.L., Mao, Q., Orii, T., Kondo, N., Sly, W.S. Mol. Ther. (2005) [Pubmed]
  22. Extracellular human immunodeficiency virus type 1 Tat protein promotes aggregation and adhesion of cerebellar neurons. Orsini, M.J., Debouck, C.M., Webb, C.L., Lysko, P.G. J. Neurosci. (1996) [Pubmed]
  23. Neuroprotection of Tat-GluR6-9c against neuronal death induced by kainate in rat hippocampus via nuclear and non-nuclear pathways. Liu, X.M., Pei, D.S., Guan, Q.H., Sun, Y.F., Wang, X.T., Zhang, Q.X., Zhang, G.Y. J. Biol. Chem. (2006) [Pubmed]
  24. HIV-1 Tat increases cell survival in response to cisplatin by stimulating Rad51 gene expression. Chipitsyna, G., Slonina, D., Siddiqui, K., Peruzzi, F., Skorski, T., Reiss, K., Sawaya, B.E., Khalili, K., Amini, S. Oncogene (2004) [Pubmed]
  25. A cystine-dependent inactivator of tyrosine aminotransferase co-purifies with gamma-cystathionase (cystine desulfurase). Hargrove, J.L., Wichman, R.D. J. Biol. Chem. (1987) [Pubmed]
  26. Role of lysosomotrophic reagents in glucocorticoid hormone action. Kalimi, M. Biochim. Biophys. Acta (1986) [Pubmed]
  27. Induction of tyrosine aminotransferase and amino acid transport in rat hepatoma cells by insulin and the insulin-like growth factor, multiplication-stimulating activity. Mediation by insulin and multiplication-stimulating activity receptors. Heaton, J.H., Schilling, E.E., Gelehrter, T.D., Rechler, M.M., Spencer, C.J., Nissley, S.P. Biochim. Biophys. Acta (1980) [Pubmed]
  28. Cellular adaptation to chronic ethanol results in altered compartmentalization and function of the scaffolding protein RACK1. Vagts, A.J., He, D.Y., Yaka, R., Ron, D. Alcohol. Clin. Exp. Res. (2003) [Pubmed]
  29. Hormonal regulation and the effects of glucose on tyrosine aminotransferase activity in adult rat hepatocytes cultured on floating collagen membranes. Michalopoulos, G., Sattler, G.L., Pitot, H.C. Cancer Res. (1978) [Pubmed]
  30. Characterization of the nuclear proteins binding the CACCC element of a glucocorticoid-responsive enhancer in the tyrosine aminotransferase gene. DeVack, C., Lupp, B., Nichols, M., Kowenz-Leutz, E., Schmid, W., Schütz, G. Eur. J. Biochem. (1993) [Pubmed]
  31. 3-Chloro-1,3,5-pregnatriene derivatives with glucocorticoid activity. Arányi, P., Náray, A., Ninh, N.V., Fekete, G., Tóth, J., Horváth, I. Steroids (1983) [Pubmed]
  32. Studies on biomodulators of glucocorticoid action: amplifiers and suppressors of glucocorticoid action. Katunuma, N., Kato, Y., Kido, H. Adv. Enzyme Regul. (1988) [Pubmed]
  33. Ethanol induces gene expression via nuclear compartmentalization of receptor for activated C kinase 1. He, D.Y., Vagts, A.J., Yaka, R., Ron, D. Mol. Pharmacol. (2002) [Pubmed]
  34. Modulation of botulinum neurotoxin A catalytic domain stability by tyrosine phosphorylation. Ibañez, C., Blanes-Mira, C., Fernández-Ballester, G., Planells-Cases, R., Ferrer-Montiel, A. FEBS Lett. (2004) [Pubmed]
  35. Bio-effectiveness of Tat-catalase conjugate: a potential tool for the identification of H2O2-dependent cellular signal transduction pathways. Watanabe, N., Iwamoto, T., Bowen, K.D., Dickinson, D.A., Torres, M., Forman, H.J. Biochem. Biophys. Res. Commun. (2003) [Pubmed]
  36. Inhibitory effect of ethanol administration on beta-alanine-2-oxoglutarate aminotransferase (GABA aminotransferase) in disulfiram-pretreated rats. Kontani, Y., Kawasaki, S., Kaneko, M., Matsuda, K., Sakata, S.F., Tamaki, N. J. Nutr. Sci. Vitaminol. (1998) [Pubmed]
  37. Evidence for a plasma membrane-mediated permeability barrier to Tat basic domain in well-differentiated epithelial cells: lack of correlation with heparan sulfate. Violini, S., Sharma, V., Prior, J.L., Dyszlewski, M., Piwnica-Worms, D. Biochemistry (2002) [Pubmed]
  38. Arginine-aminoglycoside conjugates that bind to HIV transactivation responsive element RNA in vitro. Litovchick, A., Evdokimov, A.G., Lapidot, A. FEBS Lett. (1999) [Pubmed]
  39. HIV-1 Tat alters normal organization of neurons and astrocytes in primary rodent brain cell cultures: RGD sequence dependence. Kolson, D.L., Buchhalter, J., Collman, R., Hellmig, B., Farrell, C.F., Debouck, C., Gonzalez-Scarano, F. AIDS Res. Hum. Retroviruses (1993) [Pubmed]
  40. Temporal relationships between HIV-1 Tat-induced neuronal degeneration, OX-42 immunoreactivity, reactive astrocytosis, and protein oxidation in the rat striatum. Aksenov, M.Y., Hasselrot, U., Wu, G., Nath, A., Anderson, C., Mactutus, C.F., Booze, R.M. Brain Res. (2003) [Pubmed]
  41. Neonatal hippocampal Tat injections: developmental effects on prepulse inhibition (PPI) of the auditory startle response. Fitting, S., Booze, R.M., Mactutus, C.F. Int. J. Dev. Neurosci. (2006) [Pubmed]
 
WikiGenes - Universities