The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Chemical Compound Review

HC 3     2-[4-[4-(2-hydroxy-4,4- dimethyl-1-oxa-4...

Synonyms: NSC-527583, AC1OAA14, CTK8G0151, NSC527583, HMS2232A14, ...
This record was replaced with 3585.
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Hemicholinium

 

Psychiatry related information on Hemicholinium

 

High impact information on Hemicholinium

 

Chemical compound and disease context of Hemicholinium

 

Biological context of Hemicholinium

 

Anatomical context of Hemicholinium

 

Associations of Hemicholinium with other chemical compounds

 

Gene context of Hemicholinium

 

Analytical, diagnostic and therapeutic context of Hemicholinium

  • We compared the effects of this "depletion regimen" with the responses in two control groups: a stimulation control group, which was subjected to high-frequency right vagus stimulation only, and a drug control group, which received a hemicholinium-3 infusion only [39].
  • Perfusion of 10 microM hemicholinium-3 (HC-3), a Ch uptake inhibitor, through the striatum induced a complete inhibition of ACh release and increased Ch levels in all drug-treated groups [40].
  • 2. Subcutaneous injection of maximum tolerable doses of hemicholinium-3 (50 mug/kg) twice daily for 7 days increased the number of extrajunctional receptors along the whole length of muscle fibre, the approximate density of receptor on muscle membrane being increased from 6/mum2 in normal diaphragm to 38/mum2 [41].
  • Central pretreatment with hemicholinium-3 also inhibited the pressor response to intravenous injection of 0.5 mg/kg cocaine [42].
  • 2 In unstimulated ganglia, the uptake of [3H]-choline (0.1 microM) ('high affinity uptake') was unaffected by denervation or by hemicholinium-3 (HC-3), suggesting uptake by structures other than cholinergic nerve terminals [43].

References

  1. Biochemical interruption of membrane phospholipid renewal in retinal photoreceptor cells. Pu, G.A., Masland, R.H. J. Neurosci. (1984) [Pubmed]
  2. Synthesis and evaluation of 18F-labeled choline as an oncologic tracer for positron emission tomography: initial findings in prostate cancer. DeGrado, T.R., Coleman, R.E., Wang, S., Baldwin, S.W., Orr, M.D., Robertson, C.N., Polascik, T.J., Price, D.T. Cancer Res. (2001) [Pubmed]
  3. QSAR-derived choline kinase inhibitors: how rational can antiproliferative drug design be? Campos, J., Núñez, M.C., Conejo-García, A., Sánchez-Martín, R.M., Hernández-Alcoceba, R., Rodríguez-González, A., Lacal, J.C., Gallo, M.A., Espinosa, A. Current medicinal chemistry. (2003) [Pubmed]
  4. Effect of corticosteroids on sciatic nerve-tibialis anterior muscle of rats treated with hemicholinium-3. An experimental approach to a possible mechanism of action of corticosteroids in myasthenia gravis. Leeuwin, R.S., Wolters, E.C. Neurology (1977) [Pubmed]
  5. Action of hemicholinium-3 on phospholipid metabolism in Krebs II ascites cells. Lloveras, J., Hamza, M., Chap, H., Douste-Blazy, L. Biochem. Pharmacol. (1985) [Pubmed]
  6. Hemicholinium-3 impairs spatial learning and the deficit is reversed by cholinomimetics. Hagan, J.J., Jansen, J.H., Broekkamp, C.L. Psychopharmacology (Berl.) (1989) [Pubmed]
  7. Amnesia produced by intracerebroventricular injections of hemicholinium-3 in mice was prevented by pretreatment with piracetam-like compounds. Franklin, S.R., Sethy, V.H., Tang, A.H. Pharmacol. Biochem. Behav. (1986) [Pubmed]
  8. Cholinergic antagonists in ventral tegmentum elevate thresholds for lateral hypothalamic and brainstem self-stimulation. Kofman, O., Yeomans, J.S. Pharmacol. Biochem. Behav. (1988) [Pubmed]
  9. Effect of brain acetylcholine depletion on bicuculline-induced cardiovascular and locomotor responses. Tellioğlu, T., Aker, R., Oktay, S., Onat, F. Int. J. Neurosci. (1997) [Pubmed]
  10. Phospholipase D-catalyzed hydrolysis of phosphatidylcholine provides the choline precursor for acetylcholine synthesis in a human neuronal cell line. Lee, H.C., Fellenz-Maloney, M.P., Liscovitch, M., Blusztajn, J.K. Proc. Natl. Acad. Sci. U.S.A. (1993) [Pubmed]
  11. Acetylcholine is synthesized by and acts as an autocrine growth factor for small cell lung carcinoma. Song, P., Sekhon, H.S., Jia, Y., Keller, J.A., Blusztajn, J.K., Mark, G.P., Spindel, E.R. Cancer Res. (2003) [Pubmed]
  12. Cholinergic regulation of arterial pressure by the C1 area of the rostral ventrolateral medulla. Giuliano, R., Ruggiero, D.A., Morrison, S., Ernsberger, P., Reis, D.J. J. Neurosci. (1989) [Pubmed]
  13. High affinity choline uptake and calcium-dependent acetylcholine release in proteoliposomes derived from rat cortical synaptosomes. Meyer, E.M., Cooper, J.R. J. Neurosci. (1983) [Pubmed]
  14. Effect of corticosteroids on the phrenic nerve-diaphragm of preparation treated with hemicholinium. A possible model of myasthenia gravis. Wolters, M.J., Leeuwin, R.S. Neurology (1976) [Pubmed]
  15. Choline uptake in cholinergic nodose cell bodies. Palouzier-Paulignan, B., Chamoin, M.C., Ternaux, J.P. Neuroscience (1991) [Pubmed]
  16. Therapeutic effect of THA on hemicholinium-3-induced learning impairment is independent of serotonergic and noradrenergic systems. Hagan, J.J., Jansen, J.H., Nefkens, F.E., de Boer, T. Psychopharmacology (Berl.) (1990) [Pubmed]
  17. Effects of arecoline and pilocarpine on learning ability in marmosets pretreated with hemicholinium-3. Ridley, R.M., Baker, H.F., Drewett, B. Psychopharmacology (Berl.) (1987) [Pubmed]
  18. The effect of acetylcholine depletion on behavior following traumatic brain injury. Robinson, S.E., Martin, R.M., Davis, T.R., Gyenes, C.A., Ryland, J.E., Enters, E.K. Brain Res. (1990) [Pubmed]
  19. Regulation of rat brain synaptosomal [3H]hemicholinium-3 binding and [3H]choline transport sites following exposure to choline mustard aziridinium ion. Ferguson, S.S., Rylett, R.J., Collier, B. J. Neurochem. (1994) [Pubmed]
  20. Choline uptake by the neuroblastoma x glioma hybrid, NG108-15. McGee, R. J. Neurochem. (1980) [Pubmed]
  21. Suppression of hypertension during chronic reduction of brain acetylcholine in spontaneously hypertensive rats. Vargas, H.M., Brezenoff, H.E. J. Hypertens. (1988) [Pubmed]
  22. The nature and origin of calcium-insensitive miniature end-plate potentials at rodent neuromuscular junctions. Lupa, M.T., Tabti, N., Thesleff, S., Vyskocil, F., Yu, S.P. J. Physiol. (Lond.) (1986) [Pubmed]
  23. Synthesis and structure-toxicity relationships of three new stable analogues of acetyl-seco-hemicholinium-3. Haarstad, V.B., Domer, F.R., Chihal, D.M., Rege, A.B., Charles, H.C. J. Med. Chem. (1976) [Pubmed]
  24. Lasting effects of developmental dexamethasone treatment on neural cell number and size, synaptic activity, and cell signaling: critical periods of vulnerability, dose-effect relationships, regional targets, and sex selectivity. Kreider, M.L., Tate, C.A., Cousins, M.M., Oliver, C.A., Seidler, F.J., Slotkin, T.A. Neuropsychopharmacology (2006) [Pubmed]
  25. Binding of [3H]hemicholinium-3 to the high-affinity choline transporter in electric organ synaptosomal membranes. O'Regan, S. J. Neurochem. (1988) [Pubmed]
  26. Alteration of retinal choline metabolism in an experimental model for photoreceptor cell degeneration. Pu, G.A., Anderson, R.E. Invest. Ophthalmol. Vis. Sci. (1983) [Pubmed]
  27. Mobilization of the readily releasable pool of acetylcholine from a sympathetic ganglion by tityustoxin in the presence of vesamicol. Prado, M.A., Gomez, M.V., Collier, B. J. Neurochem. (1992) [Pubmed]
  28. Choline kinase activity in the developing rat spinal cord: differential development of hemicholinium-3 sensitive and insensitive activity. Burt, A.M. J. Neurochem. (1977) [Pubmed]
  29. Synaptosomal phospholipase D potential role in providing choline for acetylcholine synthesis. Hattori, H., Kanfer, J.N. J. Neurochem. (1985) [Pubmed]
  30. Evaluation of 18F-FA-4 and 11C-pipzA-4 as radioligands for the in vivo evaluation of the high-affinity choline uptake system. Gilissen, C., de Groot, T.J., Bronfman, F., van Leuven, F., Verbruggen, A.M., Bormans, G.M. J. Nucl. Med. (2003) [Pubmed]
  31. Choline uptake by cerebral capillary endothelial cells in culture. Estrada, C., Bready, J., Berliner, J., Cancilla, P.A. J. Neurochem. (1990) [Pubmed]
  32. Interaction between acetylcholine and bradykinin in the lateral septal area of the rat brain: involvement of muscarinic receptors in cardiovascular responses. Pirola, C.J., Balda, M.S., Alvarez, A.L., Finkielman, S., Nahmod, V.E. Neuropharmacology (1986) [Pubmed]
  33. Stereoisomers of quaternary and tertiary 4-methyl piperidine analogs of hemicholinium-3. Sheff, K.Y., Tedford, C.E., Flynn, J.R., Yorek, M.A., Cannon, J.G., Long, J.P. J. Pharmacol. Exp. Ther. (1988) [Pubmed]
  34. Par-4 inhibits choline uptake by interacting with CHT1 and reducing its incorporation on the plasma membrane. Xie, J., Guo, Q. J. Biol. Chem. (2004) [Pubmed]
  35. Expression of the high-affinity choline transporter, CHT1, in the neuronal and non-neuronal cholinergic system of human and rat skin. Haberberger, R.V., Pfeil, U., Lips, K.S., Kummer, W. J. Invest. Dermatol. (2002) [Pubmed]
  36. Development of cholinergic neurons in rat brain regions: dose-dependent effects of propylthiouracil-induced hypothyroidism. Sawin, S., Brodish, P., Carter, C.S., Stanton, M.E., Lau, C. Neurotoxicology and teratology. (1998) [Pubmed]
  37. Sex-dependent actions of amyloid beta peptides on hippocampal choline carriers of postnatal rats. Kristofiková, Z., Rícný, J., Kozmiková, I., Rípová, D., Zach, P., Klaschka, J. Neurochem. Res. (2006) [Pubmed]
  38. Choline kinase inhibitors as a novel approach for antiproliferative drug design. Hernández-Alcoceba, R., Saniger, L., Campos, J., Núñez, M.C., Khaless, F., Gallo, M.A., Espinosa, A., Lacal, J.C. Oncogene (1997) [Pubmed]
  39. Insignificant bilateral convergence of preganglionic vagal fibers on postganglionic neurons to the canine heart. Lang, S.A., Zieske, H., Levy, M.N. Circ. Res. (1990) [Pubmed]
  40. Relations between the extracellular concentrations of choline and acetylcholine in rat striatum. Ikarashi, Y., Takahashi, A., Ishimaru, H., Arai, T., Maruyama, Y. J. Neurochem. (1997) [Pubmed]
  41. Effects of chronic treatment with various neuromuscular blocking agents on the number and distribution of acetylcholine receptors in the rat diaphragm. Chang, C.C., Chuang, S.T., Huang, M.C. J. Physiol. (Lond.) (1975) [Pubmed]
  42. The importance of brainstem cholinergic neurons in the pressor response to cocaine. Buccafusco, J.J., Davis, J.A., Shuster, L.C., Buccafusco, C.J., Gattu, M. J. Pharmacol. Exp. Ther. (2005) [Pubmed]
  43. Potassium activation of [3H]-choline accumulation by isolated sympathetic ganglia of the rat. Higgins, A.J., Neal, M.J. Br. J. Pharmacol. (1982) [Pubmed]
 
WikiGenes - Universities