The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
MeSH Review


Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Ependyma


Psychiatry related information on Ependyma


High impact information on Ependyma


Biological context of Ependyma


Anatomical context of Ependyma


Associations of Ependyma with chemical compounds

  • To assess proliferation, the bromodeoxyuridine (BrdU) labeling index (LI) in the ependyma at T1 was calculated at 3 or 14 days [22].
  • Previously, using light microscopy, we showed direct binding of two monoclonal phosphatidylserine-reactive antibodies (aPS) to ependyma and myelin of fixed cat brain [23].
  • Dissociated cells from zona ependyma were grown as primary monolayer cultures on polylysine-coated slides [24].
  • The extravascular BL, termed fractones because of their fractal organization, were regularly arranged along the SEL and consisted of stems terminating in bulbs immediately underneath the ependyma [25].
  • Morphological evidence for the presence of two cell types in the ependyma of the subcommissural organ of the snake, Natrix maura [26].

Gene context of Ependyma


Analytical, diagnostic and therapeutic context of Ependyma


  1. Viral receptors on isolated murine and human ependymal cells. Tardieu, M., Weiner, H.L. Science (1982) [Pubmed]
  2. Choroid plexus tumors. An immunocytochemical study with particular reference to the coexpression of intermediate filament proteins. Doglioni, C., Dell'Orto, P., Coggi, G., Iuzzolino, P., Bontempini, L., Viale, G. Am. J. Pathol. (1987) [Pubmed]
  3. Anticonvulsant prolongation of survival in adult murine lymphocytic choriomeningitis. II. Ultrastructural observations of pathogenetic events. Walker, D.H., Camenga, D.L., Whitfield, S., Murphy, F.A. J. Neuropathol. Exp. Neurol. (1977) [Pubmed]
  4. Induction of Fos in glia-like cells after focal brain injury but not during wallerian degeneration. Dragunow, M., de Castro, D., Faull, R.L. Brain Res. (1990) [Pubmed]
  5. Ependyma: normal and pathological. A review of the literature. Bruni, J.E., Del Bigio, M.R., Clattenburg, R.E. Brain Res. (1985) [Pubmed]
  6. Congo red birefringent structures in the hypothalamus in senile dementia of the Alzheimer type. Simpson, J., Yates, C.M., Watts, A.G., Fink, G. Neuropathol. Appl. Neurobiol. (1988) [Pubmed]
  7. Prolactin binding sites in the rat brain. Walsh, R.J., Posner, B.I., Kopriwa, B.M., Brawer, J.R. Science (1978) [Pubmed]
  8. Dysregulation of protein modification by ISG15 results in brain cell injury. Ritchie, K.J., Malakhov, M.P., Hetherington, C.J., Zhou, L., Little, M.T., Malakhova, O.A., Sipe, J.C., Orkin, S.H., Zhang, D.E. Genes Dev. (2002) [Pubmed]
  9. Transplants of Schwann cell cultures promote axonal regeneration in the adult mammalian brain. Kromer, L.F., Cornbrooks, C.J. Proc. Natl. Acad. Sci. U.S.A. (1985) [Pubmed]
  10. Localization and functional analyses of the MLC1 protein involved in megalencephalic leukoencephalopathy with subcortical cysts. Teijido, O., Martínez, A., Pusch, M., Zorzano, A., Soriano, E., Del Río, J.A., Palacín, M., Estévez, R. Hum. Mol. Genet. (2004) [Pubmed]
  11. Dysfunctional cilia lead to altered ependyma and choroid plexus function, and result in the formation of hydrocephalus. Banizs, B., Pike, M.M., Millican, C.L., Ferguson, W.B., Komlosi, P., Sheetz, J., Bell, P.D., Schwiebert, E.M., Yoder, B.K. Development (2005) [Pubmed]
  12. The growth of four human and animal enteroviruses in the central nervous systems of mice. Sethi, P., Lipton, H.L. J. Neuropathol. Exp. Neurol. (1981) [Pubmed]
  13. Predominant localization of the LIS family of gene products to Cajal-Retzius cells and ventricular neuroepithelium in the developing human cortex. Clark, G.D., Mizuguchi, M., Antalffy, B., Barnes, J., Armstrong, D. J. Neuropathol. Exp. Neurol. (1997) [Pubmed]
  14. Neuronal promoter of human aromatic L-amino acid decarboxylase gene directs transgene expression to the adult floor plate and aminergic nuclei induced by the isthmus. Chatelin, S., Wehrlé, R., Mercier, P., Morello, D., Sotelo, C., Weber, M.J. Brain Res. Mol. Brain Res. (2001) [Pubmed]
  15. Expression of p68 protein kinase as recognized by the monoclonal antibody TJ4C4 during human fetal development. Haines, G.K., Ghadge, G., Radosevich, J.A. Tumour Biol. (1993) [Pubmed]
  16. Certain notable clinical attributes of the histiocytic sarcomas of the central nervous system. Adams, R.D. Acta neuropathologica. Supplementum. (1975) [Pubmed]
  17. Functional properties and cellular distribution of the system A glutamine transporter SNAT1 support specialized roles in central neurons. Mackenzie, B., Schäfer, M.K., Erickson, J.D., Hediger, M.A., Weihe, E., Varoqui, H. J. Biol. Chem. (2003) [Pubmed]
  18. Identification of PA2.26 antigen as a novel cell-surface mucin-type glycoprotein that induces plasma membrane extensions and increased motility in keratinocytes. Scholl, F.G., Gamallo, C., Vilar¿o, S., Quintanilla, M. J. Cell. Sci. (1999) [Pubmed]
  19. Spontaneous congenital hydrocephalus in the mutant mouse hyh. Changes in the ventricular system and the subcommissural organ. Pérez-Fígares, J.M., Jiménez, A.J., Pérez-Martín, M., Fernández-Llebrez, P., Cifuentes, M., Riera, P., Rodríguez, S., Rodríguez, E.M. J. Neuropathol. Exp. Neurol. (1998) [Pubmed]
  20. Hexokinase I messenger RNA in the rat central nervous system. Jacobsson, G., Meister, B. Mol. Cell. Neurosci. (1994) [Pubmed]
  21. Distribution of gonadotropin-releasing hormone in the mouse brain as revealed by immunohistochemistry. Gross, D.S. Endocrinology (1976) [Pubmed]
  22. Epidermal growth factor and fibroblast growth factor 2 cause proliferation of ependymal precursor cells in the adult rat spinal cord in vivo. Kojima, A., Tator, C.H. J. Neuropathol. Exp. Neurol. (2000) [Pubmed]
  23. Ultrastructural localization of monoclonal antiphospholipid antibody binding to rat brain. Kent, M.N., Alvarez, F.J., Ng, A.K., Rote, N.S. Exp. Neurol. (2000) [Pubmed]
  24. Cultures of zona ependyma cells of goldfish brain: an immunological study of the synthesis and release of ependymins. Majocha, R.E., Schmidt, R., Shashoua, V.E. J. Neurosci. Res. (1982) [Pubmed]
  25. Anatomy of the brain neurogenic zones revisited: fractones and the fibroblast/macrophage network. Mercier, F., Kitasako, J.T., Hatton, G.I. J. Comp. Neurol. (2002) [Pubmed]
  26. Morphological evidence for the presence of two cell types in the ependyma of the subcommissural organ of the snake, Natrix maura. Fernández-Llebrez, P., Pérez-Fígares, J.M., Becerra, J., Pérez, J., Marín-Girón, F. Cell Tissue Res. (1984) [Pubmed]
  27. Sox2 deficiency causes neurodegeneration and impaired neurogenesis in the adult mouse brain. Ferri, A.L., Cavallaro, M., Braida, D., Di Cristofano, A., Canta, A., Vezzani, A., Ottolenghi, S., Pandolfi, P.P., Sala, M., DeBiasi, S., Nicolis, S.K. Development (2004) [Pubmed]
  28. Molecular characterization of rabbit phospholipid transfer protein: choroid plexus and ependyma synthesize high levels of phospholipid transfer protein. Gander, R., Eller, P., Kaser, S., Theurl, I., Walter, D., Sauper, T., Ritsch, A., Patsch, J.R., Föger, B. J. Lipid Res. (2002) [Pubmed]
  29. Neuropeptide FF distribution in the human and rat forebrain: a comparative immunohistochemical study. Goncharuk, V.D., Buijs, R.M., Mactavish, D., Jhamandas, J.H. J. Comp. Neurol. (2006) [Pubmed]
  30. Differential distribution of exogenous BDNF, NGF, and NT-3 in the brain corresponds to the relative abundance and distribution of high-affinity and low-affinity neurotrophin receptors. Anderson, K.D., Alderson, R.F., Altar, C.A., DiStefano, P.S., Corcoran, T.L., Lindsay, R.M., Wiegand, S.J. J. Comp. Neurol. (1995) [Pubmed]
  31. Expression of neuropeptide processing enzymes and neurosecretory proteins in ependyma and choroid plexus epithelium. Gee, P., Rhodes, C.H., Fricker, L.D., Angeletti, R.H. Brain Res. (1993) [Pubmed]
  32. Cerebrospinal fluid edema and its sequelae in hydrocephalus. Weller, R.O., Mitchell, J. Advances in neurology. (1980) [Pubmed]
  33. Development of the median eminence in the male mouse. Karyometric effect of neonatal and prepuberal castration. Carmona-Calero, E., Perez-Delgado, M.M., Castañeyra-Perdomo, A., Perez-Gonzalez, H., Ferres-Torres, R. Journal für Hirnforschung. (1990) [Pubmed]
  34. Regional ependymal upregulation of vimentin in Chiari II malformation, aqueductal stenosis, and hydromyelia. Sarnat, H.B. Pediatr. Dev. Pathol. (2004) [Pubmed]
WikiGenes - Universities