The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
Chemical Compound Review

L-Amphetamine     (2R)-1-phenylpropan-2-amine

Synonyms: Levamfetamina, Levamfetamine, Levanfetamina, Levamfetaminum, Levamphetamine, ...
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of dextroamphetamine


Psychiatry related information on dextroamphetamine


High impact information on dextroamphetamine

  • The (+/-)phenylisopropylamine analogues had significantly higher intrinsic activities for 5-HT 2A receptor-mediated hydrolysis of phosphatidyl inositol compared to their phenethylamine analogues [11].
  • In aODN-pretreated rats a strong reduction of the AMPH, but not of the COC-stimulated DA efflux from nucleus accumbens was observed [12].
  • The inversion of vesicular transporters and/or intravesicular alkalinization is assumed to have a role in AMPH-induced exocytosis [12].
  • We investigated the possible involvement of a Shaker-like Kv1.1 channel subtype in the central effects of AMPH, using an antisense oligodeoxyribonucleotide (aODN) that specifically and reversibly inhibits the expression of these channels in the brain [12].
  • We tested this hypothesis in human embryonic kidney 293 cells stably transfected with the human DAT by measuring the uptake of dopamine, tyramine, and D- and L-amphetamine as well as substrate-induced release of preloaded N-methyl-4-[3H]phenylpyridinium ([3H]MPP+) [13].

Chemical compound and disease context of dextroamphetamine


Biological context of dextroamphetamine


Anatomical context of dextroamphetamine


Associations of dextroamphetamine with other chemical compounds


Gene context of dextroamphetamine


Analytical, diagnostic and therapeutic context of dextroamphetamine

  • In addition, changes in electroencephalograms and behavior of rats induced by l-deprenyl and l-amphetamine were different from those produced by the d-enantiomers [35].
  • Intravenous self-administration of d- and l-amphetamine by dog [36].
  • N-(Trifluoroacetyl)-l-prolyl- (N-TFA-l-prolyl-) d- and l-amphetamine diastereoisomers were separated by high-performance liquid chromatography and confirmed by an interfaced mass spectrometer system, using the commercially available N-3,5-(dinitrobenzoyl)phenylglycine chiral column [37].
  • The authors observed significant cross-reactivity of L-amphetamine with the amphetamine immunoassay also marketed by Abbott Laboratories and run on the AxSYM analyzer [38].
  • Animals that eat and/or drink in response to electrical stimulation of the lateral hypothalamus (ESLH-pos) are more responsive to both schedule-induced polydipsia (SIP) tests and a series of amphetamine (AMPH) injections than animals that do not exhibit these behaviors (ESLH-neg) [39].


  1. A comparative study of different amphetamines on copulatory behavior and stereotype activity in the female rat. Michanek, A., Meyerson, B.J. Psychopharmacology (Berl.) (1977) [Pubmed]
  2. Evidence that 1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane (DOI)-induced hyperthermia in rats is mediated by stimulation of 5-HT2A receptors. Mazzola-Pomietto, P., Aulakh, C.S., Wozniak, K.M., Hill, J.L., Murphy, D.L. Psychopharmacology (Berl.) (1995) [Pubmed]
  3. Predictors of weight loss in children with attention deficit hyperactivity disorder treated with stimulant medication. Schertz, M., Adesman, A.R., Alfieri, N.E., Bienkowski, R.S. Pediatrics (1996) [Pubmed]
  4. Genetic factors modulate effects of C-section birth on dopaminergic function in the rat. Berger, N., Vaillancourt, C., Boksa, P. Neuroreport (2000) [Pubmed]
  5. Early maternal deprivation retards neurodevelopment in Wistar rats. Ellenbroek, B.A., Derks, N., Park, H.J. Stress (Amsterdam, Netherlands) (2005) [Pubmed]
  6. Differential effects of l-amphetamine on ontogeny of active avoidance, intertrial responses, and locomotor activity. Bauer, R., Evey, L. Psychopharmacology (Berl.) (1981) [Pubmed]
  7. Sleep deprivation deficits and their reversal by d- and l-amphetamine. Hartmann, E., Orzack, M.H., Branconnier, R. Psychopharmacology (Berl.) (1977) [Pubmed]
  8. Behavioural effects of amphetamine in a small primate: relative potencies of the d- and l-isomers. Scraggs, P.R., Ridley, R.M. Psychopharmacology (Berl.) (1978) [Pubmed]
  9. Effects of amphetamine isomers and neuroleptics on self-stimulation from the nucleus accumbens and dorsal noradrenergic bundle. Phillips, A.G., Brooke, S.M., Fibiger, H.C. Brain Res. (1975) [Pubmed]
  10. Effects of dietary and pharmacological manipulations on appetitive and consummatory aspects of feeding in non-human primates. Foltin, R.W. Appetite. (2005) [Pubmed]
  11. Differential phospholipase C activation by phenylalkylamine serotonin 5-HT 2A receptor agonists. Parrish, J.C., Braden, M.R., Gundy, E., Nichols, D.E. J. Neurochem. (2005) [Pubmed]
  12. Antisense knockdown of the Shaker-like Kv1.1 gene abolishes the central stimulatory effects of amphetamines in mice and rats. Ghelardini, C., Quattrone, A., Galeotti, N., Livi, S., Banchelli, G., Raimondi, L., Pirisino, R. Neuropsychopharmacology (2003) [Pubmed]
  13. Carrier-mediated release, transport rates, and charge transfer induced by amphetamine, tyramine, and dopamine in mammalian cells transfected with the human dopamine transporter. Sitte, H.H., Huck, S., Reither, H., Boehm, S., Singer, E.A., Pifl, C. J. Neurochem. (1998) [Pubmed]
  14. Catecholamines and self-stimulation: evidence suggesting a reinforcing role for noradrenaline and a motivating role for dopamine. Herberg, L.J., Stephens, D.N., Franklin, K.B. Pharmacol. Biochem. Behav. (1976) [Pubmed]
  15. Comparative effects of tetrahydrocannabinol on psychostimulant-induced behaviors. Moss, D.E., Koob, G.F., McMaster, S.B., Janowsky, D.S. Pharmacol. Biochem. Behav. (1984) [Pubmed]
  16. Dopaminergic and serotonergic function following isolation rearing in rats: study of behavioural responses and postmortem and in vivo neurochemistry. Jones, G.H., Hernandez, T.D., Kendall, D.A., Marsden, C.A., Robbins, T.W. Pharmacol. Biochem. Behav. (1992) [Pubmed]
  17. Behavioral supersensitivity to apomorphine and amphetamine after chronic high dose haloperidol treatment. Smith, R.C., Davis, J.M. Psychopharmacology communications. (1975) [Pubmed]
  18. A comparison of the kinetics of d- and l-amphetamine in the brain of isolated and aggregated rats. Lokiec, F., Rapin, J.R., Jacquot, C., Cohen, Y. Psychopharmacology (Berl.) (1978) [Pubmed]
  19. Blood pressure and heart rate responses evoked by d- and l-amphetamine in the pithed rat preparation. Simpson, L.L. J. Pharmacol. Exp. Ther. (1975) [Pubmed]
  20. Effects of d- and l-amphetamine on food intake: evidence for a dopaminergic substrate. Evans, K.R., Vaccarino, F.J. Pharmacol. Biochem. Behav. (1987) [Pubmed]
  21. The role of opiate mechanisms in the development of tolerance to the anorectic effects of amphetamines. Nencini, P. Pharmacol. Biochem. Behav. (1988) [Pubmed]
  22. Activity density in the open field: a measure for differentiating the effect of psychostimulants. Kafkafi, N., Elmer, G.I. Pharmacol. Biochem. Behav. (2005) [Pubmed]
  23. Cortisol and GH responses to D- and L-amphetamine in monkeys. Marantz, R., Sachar, E.J., Weitzman, E., Sassin, J. Endocrinology (1976) [Pubmed]
  24. Increased sensitivity to d- and l-amphetamine action after midbrain raphe lesions as measured by locomotor activity. Lucki, I., Harvey, J.A. Neuropharmacology (1979) [Pubmed]
  25. Amphetamine: evaluation of d- and l-isomers as releasing agents and uptake inhibitors for 3H-dopamine and 3H-norepinephrine in slices of rat neostriatum and cerebral cortex. Heikkila, R.E., Orlansky, H., Mytilineou, C., Cohen, G. J. Pharmacol. Exp. Ther. (1975) [Pubmed]
  26. Differential effects of amphetamine isomers on dopamine release in the rat striatum and nucleus accumbens core. Glaser, P.E., Thomas, T.C., Joyce, B.M., Castellanos, F.X., Gerhardt, G.A. Psychopharmacology (Berl.) (2005) [Pubmed]
  27. Effects of amphetamine isomers, methylphenidate and atomoxetine on synaptosomal and synaptic vesicle accumulation and release of dopamine and noradrenaline in vitro in the rat brain. Easton, N., Steward, C., Marshall, F., Fone, K., Marsden, C. Neuropharmacology (2007) [Pubmed]
  28. A functional effect of dopamine in the nucleus accumbens and in some other dopamine-rich parts of the rat brain. Jackson, D.M., Andén, N.E., Dahlström, A. Psychopharmacologia. (1975) [Pubmed]
  29. Role of various 5-HT receptor subtypes in mediating neuroendocrine effects of 1-(2,5-dimethoxy-4-methylphenyl)-2-aminopropane (DOM) in rats. Aulakh, C.S., Mazzola-Pomietto, P., Hill, J.L., Murphy, D.L. J. Pharmacol. Exp. Ther. (1994) [Pubmed]
  30. Comparisons of hallucinogenic phenylisopropylamine binding affinities at cloned human 5-HT2A, -HT(2B) and 5-HT2C receptors. Nelson, D.L., Lucaites, V.L., Wainscott, D.B., Glennon, R.A. Naunyn Schmiedebergs Arch. Pharmacol. (1999) [Pubmed]
  31. Agonist activity of LSD and lisuride at cloned 5HT2A and 5HT2C receptors. Egan, C.T., Herrick-Davis, K., Miller, K., Glennon, R.A., Teitler, M. Psychopharmacology (Berl.) (1998) [Pubmed]
  32. Changes in mRNA levels for heat-shock/stress proteins (Hsp) and a secretory vesicle associated cysteine-string protein (Csp1) after amphetamine (AMPH) exposure. Bowyer, J.F., Davies, D.L. Ann. N. Y. Acad. Sci. (1999) [Pubmed]
  33. Chronic L-deprenyl or L-amphetamine: equal cognitive enhancement, unequal MAO inhibition. Gelowitz, D.L., Richardson, J.S., Wishart, T.B., Yu, P.H., Lai, C.T. Pharmacol. Biochem. Behav. (1994) [Pubmed]
  34. Effect of d- and l-amphetamine on rat plasma prolactin levels. Meltzer, H.Y., Fessler, R.G., Simonovic, M., Doherty, J., Fang, V.S. Psychopharmacology (Berl.) (1979) [Pubmed]
  35. Evaluation of physical dependence liability of l-deprenyl (selegiline) in animals. Nickel, B., Szelenyi, I., Schulze, G. Clin. Pharmacol. Ther. (1994) [Pubmed]
  36. Intravenous self-administration of d- and l-amphetamine by dog. Risner, M.E. Eur. J. Pharmacol. (1975) [Pubmed]
  37. Enantiomeric composition analysis of amphetamine and methamphetamine by chiral phase high-performance liquid chromatography-mass spectrometry. Hayes, S.M., Liu, R.H., Tsang, W.S., Legendre, M.G., Berni, R.J., Pillion, D.J., Barnes, S., Ho, M.H. J. Chromatogr. (1987) [Pubmed]
  38. Stereospecificity of antibody: quinine, the optical isomer of quinidine and anti-malarial drug chloroquine do not cross-react with quinidine immunoassays. Paul, A., Wells, A., Dasgupta, A. Therapeutic drug monitoring. (2000) [Pubmed]
  39. Individual differences in non-regulatory ingestive behavior and catecholamine systems. Mittleman, G., Valenstein, E.S. Brain Res. (1985) [Pubmed]
WikiGenes - Universities