The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
Gene Review

umpG  -  broad specificity 5'(3')-nucleotidase and...

Escherichia coli str. K-12 substr. MG1655

Synonyms: ECK2739, JW2714, surE, ygbC
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of surE


High impact information on surE


Chemical compound and disease context of surE


Biological context of surE

  • These cells were found to survive poorly in stationary phase, at elevated temperatures, and in high-salt media compared with parent cells containing the intact gene, and we thus designate this gene surE (survival). surE appears to be the first gene of a bicistronic operon also containing the pcm gene [14].
  • Mutations in the Escherichia coli surE gene increase isoaspartyl accumulation in a strain lacking the pcm repair methyltransferase but suppress stress-survival phenotypes [15].
  • Analysis of the nucleotide sequence and of the origins of transcription have confirmed that the P2-appC-appB- (ORFX)-P1-appA region is organized on the chromosome as an operon transcribed clockwise from P2 and that P1 is a minor promoter for appA alone [16].
  • Analyses of the sequences, phylogenetic distribution, and genomic organization of the SurE family reveal examples of genomes encoding multiple surE genes, and suggest that SurE homologs constitute a broad family of enzymes with phosphatase-like activities [17].
  • The product of the previously identified appY gene, which when present on a high-copy-number plasmid stimulates synthesis of acid phosphatase, was shown to activate the cyx promoter [18].

Anatomical context of surE


Associations of surE with chemical compounds


Regulatory relationships of surE

  • A null mutation in surE also suppressed stress-survival defects previously observed in a pcm mutant strain, providing further evidence for an interaction between the two gene products [15].

Other interactions of surE


Analytical, diagnostic and therapeutic context of surE


  1. Structure of Thermotoga maritima stationary phase survival protein SurE: a novel acid phosphatase. Zhang, R.G., Skarina, T., Katz, J.E., Beasley, S., Khachatryan, A., Vyas, S., Arrowsmith, C.H., Clarke, S., Edwards, A., Joachimiak, A., Savchenko, A. Structure (Camb.) (2001) [Pubmed]
  2. Crystallization and preliminary X-ray crystallographic analysis of the surE protein from Thermotoga maritima. Kwak, J.E., Ha, K.S., Lee, J.Y., Im, Y.J., Park, S.H., Eom, S.H., Suh, S.W. Acta Crystallogr. D Biol. Crystallogr. (2001) [Pubmed]
  3. Bacterial acid phosphatase gene fusions useful as targets for cloning-dependent insertional inactivation. Thaller, M.C., Berlutti, F., Schippa, S., Selan, L., Rossolini, G.M. Biotechnol. Prog. (1998) [Pubmed]
  4. Expression of hepatitis B surface antigen gene in yeast. Miyanohara, A., Toh-e, A., Nozaki, C., Hamada, F., Ohtomo, N., Matsubara, K. Proc. Natl. Acad. Sci. U.S.A. (1983) [Pubmed]
  5. Interleukin-1 and tumor necrosis factor activities partially account for calvarial bone resorption induced by local injection of lipopolysaccharide. Chiang, C.Y., Kyritsis, G., Graves, D.T., Amar, S. Infect. Immun. (1999) [Pubmed]
  6. The Legionnaires' disease bacterium (Legionella pneumophila) inhibits phagosome-lysosome fusion in human monocytes. Horwitz, M.A. J. Exp. Med. (1983) [Pubmed]
  7. Membrane insertion of uracil permease, a polytopic yeast plasma membrane protein. Silve, S., Volland, C., Garnier, C., Jund, R., Chevallier, M.R., Haguenauer-Tsapis, R. Mol. Cell. Biol. (1991) [Pubmed]
  8. A novel osteoblast-derived C-type lectin that inhibits osteoclast formation. Zhou, H., Kartsogiannis, V., Hu, Y.S., Elliott, J., Quinn, J.M., McKinstry, W.J., Gillespie, M.T., Ng, K.W. J. Biol. Chem. (2001) [Pubmed]
  9. The structure of the promoter and amino terminal region of the pH 2.5 acid phosphatase structural gene (appA) of E. coli: a negative control of transcription mediated by cyclic AMP. Touati, E., Danchin, A. Biochimie (1987) [Pubmed]
  10. Phosphorylation of nucleosides by the mutated acid phosphatase from Morganella morganii. Mihara, Y., Utagawa, T., Yamada, H., Asano, Y. Appl. Environ. Microbiol. (2000) [Pubmed]
  11. Pleiotropic mutations in appR reduce pH 2.5 acid phosphatase expression and restore succinate utilisation in CRP-deficient strains of Escherichia coli. Touati, E., Dassa, E., Boquet, P.L. Mol. Gen. Genet. (1986) [Pubmed]
  12. Genetic rearrangements in the tyrB-uvrA region of the enterobacterial chromosome: a potential cause for different class B acid phosphatase regulation in Salmonella enterica and Escherichia coli. Thaller, M.C., Schippa, S., Bonci, A., Berlutti, F., Selan, L., Rossolini, G.M. FEMS Microbiol. Lett. (1999) [Pubmed]
  13. Acid phosphatase/phosphotransferases from enteric bacteria. Mihara, Y., Utagawa, T., Yamada, H., Asano, Y. J. Biosci. Bioeng. (2001) [Pubmed]
  14. A new gene involved in stationary-phase survival located at 59 minutes on the Escherichia coli chromosome. Li, C., Ichikawa, J.K., Ravetto, J.J., Kuo, H.C., Fu, J.C., Clarke, S. J. Bacteriol. (1994) [Pubmed]
  15. Mutations in the Escherichia coli surE gene increase isoaspartyl accumulation in a strain lacking the pcm repair methyltransferase but suppress stress-survival phenotypes. Visick, J.E., Ichikawa, J.K., Clarke, S. FEMS Microbiol. Lett. (1998) [Pubmed]
  16. A new oxygen-regulated operon in Escherichia coli comprises the genes for a putative third cytochrome oxidase and for pH 2.5 acid phosphatase (appA). Dassa, J., Fsihi, H., Marck, C., Dion, M., Kieffer-Bontemps, M., Boquet, P.L. Mol. Gen. Genet. (1991) [Pubmed]
  17. Structure and function of an archaeal homolog of survival protein E (SurEalpha): an acid phosphatase with purine nucleotide specificity. Mura, C., Katz, J.E., Clarke, S.G., Eisenberg, D. J. Mol. Biol. (2003) [Pubmed]
  18. Role of the transcriptional activator AppY in regulation of the cyx appA operon of Escherichia coli by anaerobiosis, phosphate starvation, and growth phase. Atlung, T., Brøndsted, L. J. Bacteriol. (1994) [Pubmed]
  19. Effects of endotoxin treatment on the differentiation of guinea pig megakaryocytes to blood platelets. Raha, S., Wesemann, W. J. Cell. Sci. (1983) [Pubmed]
  20. Incorporation of bacterial lipopolysaccharide by human Leu-11a+ natural killer cells. Ultrastructural and functional correlations. Kang, Y.H., Carl, M., Maheshwari, R.K., Watson, L.P., Yaffe, L., Grimley, P.M. Lab. Invest. (1988) [Pubmed]
  21. Phagocytosis and leukocyte enzymes in ascorbic acid deficient guinea pigs. Shilotri, P.G. J. Nutr. (1977) [Pubmed]
  22. Identification of the adipocyte acid phosphatase as a PAO-sensitive tyrosyl phosphatase. Shekels, L.L., Smith, A.J., Van Etten, R.L., Bernlohr, D.A. Protein Sci. (1992) [Pubmed]
  23. Toxic effects of methyl methanesulfonate (MMS) on activated macrophages from chickens. Qureshi, M.A., Bloom, S.E., Hamilton, J.W., Dietert, R.R. Environ. Mol. Mutagen. (1989) [Pubmed]
  24. Biochemical characterization of the class B acid phosphatase (AphA) of Escherichia coli MG1655. Passariello, C., Forleo, C., Micheli, V., Schippa, S., Leone, R., Mangani, S., Thaller, M.C., Rossolini, G.M. Biochim. Biophys. Acta (2006) [Pubmed]
  25. Isolation and characterization of a thiamin pyrophosphokinase gene, THI80, from Saccharomyces cerevisiae. Nosaka, K., Kaneko, Y., Nishimura, H., Iwashima, A. J. Biol. Chem. (1993) [Pubmed]
  26. Plasma acid phosphatase levels in endotoxaemia: modification by drugs and chemically detoxified endotoxins. Godin, D.V., Tuchek, J.M. Br. J. Pharmacol. (1983) [Pubmed]
  27. Asp304 of Escherichia coli acid phosphatase is involved in leaving group protonation. Ostanin, K., Van Etten, R.L. J. Biol. Chem. (1993) [Pubmed]
  28. Evidence of histidine phosphorylation in isocitrate lyase from Escherichia coli. Robertson, E.F., Hoyt, J.C., Reeves, H.C. J. Biol. Chem. (1988) [Pubmed]
  29. Overexpression, site-directed mutagenesis, and mechanism of Escherichia coli acid phosphatase. Ostanin, K., Harms, E.H., Stevis, P.E., Kuciel, R., Zhou, M.M., Van Etten, R.L. J. Biol. Chem. (1992) [Pubmed]
  30. Intracellular processing and toxicity of the truncated androgen receptor: nuclear congophilia-associated cell death. Feng, B., Chen, L., Drmanovic, Z., Kakabadze, I., Mendell, J.R., Marzluf, G.A., Sahenk, Z. J. Neuropathol. Exp. Neurol. (2000) [Pubmed]
  31. Cytogenetic aspects of B-cell chronic lymphocytic leukemia: their correlation with clinical stage and different polyclonal mitogens. Castoldi, G.L., Lanza, F., Cuneo, A. Cancer Genet. Cytogenet. (1987) [Pubmed]
  32. Bacterial antigen and acid phosphatase in macrophages in experimental pyelonephritis. Thomsen, O.F. Acta pathologica et microbiologica Scandinavica. Section A, Pathology. (1975) [Pubmed]
WikiGenes - Universities