The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)



Gene Review

Cav1  -  caveolin 1, caveolae protein

Rattus norvegicus

Synonyms: Cav, Caveolin-1
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Cav


Psychiatry related information on Cav


High impact information on Cav

  • In situ coating of the surface of endothelial cells in rat lung with cationic colloidal silica particles was used to separate caveolae from detergent-insoluble membranes rich in glycosyl phosphatidylinositol (GPI)-anchored proteins but devoid of caveolin [6].
  • Deficient eNOS activity was associated with a severalfold increase in binding of eNOS with caveolin [7].
  • Impaired endothelial nitric oxide synthase activity associated with enhanced caveolin binding in experimental cirrhosis in the rat [7].
  • CONCLUSIONS: These studies provide evidence that enhanced expression and interaction of caveolin with eNOS contribute to impaired NO production, reduced NOS activity, and vasoconstriction in the intact cirrhotic liver [7].
  • Caveolin transfection results in caveolae formation but not apical sorting of glycosylphosphatidylinositol (GPI)-anchored proteins in epithelial cells [8].

Chemical compound and disease context of Cav


Biological context of Cav


Anatomical context of Cav


Associations of Cav with chemical compounds


Physical interactions of Cav


Enzymatic interactions of Cav


Co-localisations of Cav


Regulatory relationships of Cav


Other interactions of Cav

  • In the present study, direct interactions of recombinant caveolin-1 with both the oxygenase and reductase domains of nNOS were demonstrated using in vitro binding assays [14].
  • Expression of kinase-defective Src mutant interfered with the association between dynamin-2, which caveolin-1 and prevented the uptake of albumin [37].
  • In conclusion, this study highlights the occurrence of the reciprocal regulation of caveolin and GLT-1 expression during processes such as astrocyte differentiation via common signaling pathways [17].
  • A redistribution of caveolin-3 and a reduction in caveolin-1 and cholesterol levels in the light fractions occurred after 10 min of reperfusion [22].
  • In EAE lesions, the immunoreactivity of caveolin-1 was increased in the ependymal cells, some astrocytes, and some inflammatory cells of the spinal cord, while that of caveolin-2 showed an intense immunoreactivity [2].

Analytical, diagnostic and therapeutic context of Cav


  1. Short-term administration of a cell-permeable caveolin-1 peptide prevents the development of monocrotaline-induced pulmonary hypertension and right ventricular hypertrophy. Jasmin, J.F., Mercier, I., Dupuis, J., Tanowitz, H.B., Lisanti, M.P. Circulation (2006) [Pubmed]
  2. Expression of caveolin-1, -2, and -3 in the spinal cords of Lewis rats with experimental autoimmune encephalomyelitis. Shin, T., Kim, H., Jin, J.K., Moon, C., Ahn, M., Tanuma, N., Matsumoto, Y. J. Neuroimmunol. (2005) [Pubmed]
  3. Evidence for Na+/Ca2+ exchanger 1 association with caveolin-1 and -2 in C6 glioma cells. Cha, S.H., Shin, S.Y., Jung, S.Y., Kim, Y.T., Park, Y.J., Kwak, J.O., Kim, H.W., Suh, C.K. IUBMB Life (2004) [Pubmed]
  4. Accumulation of molecules involved in alpha1-adrenergic signal within caveolae: caveolin expression and the development of cardiac hypertrophy. Fujita, T., Toya, Y., Iwatsubo, K., Onda, T., Kimura, K., Umemura, S., Ishikawa, Y. Cardiovasc. Res. (2001) [Pubmed]
  5. Chronic ethanol sensitizes the liver to endotoxin via effects on endothelial nitric oxide synthase regulation. Karaa, A., Kamoun, W.S., Clemens, M.G. Shock (2005) [Pubmed]
  6. Separation of caveolae from associated microdomains of GPI-anchored proteins. Schnitzer, J.E., McIntosh, D.P., Dvorak, A.M., Liu, J., Oh, P. Science (1995) [Pubmed]
  7. Impaired endothelial nitric oxide synthase activity associated with enhanced caveolin binding in experimental cirrhosis in the rat. Shah, V., Toruner, M., Haddad, F., Cadelina, G., Papapetropoulos, A., Choo, K., Sessa, W.C., Groszmann, R.J. Gastroenterology (1999) [Pubmed]
  8. Caveolin transfection results in caveolae formation but not apical sorting of glycosylphosphatidylinositol (GPI)-anchored proteins in epithelial cells. Lipardi, C., Mora, R., Colomer, V., Paladino, S., Nitsch, L., Rodriguez-Boulan, E., Zurzolo, C. J. Cell Biol. (1998) [Pubmed]
  9. Decreased endothelial nitric-oxide synthase (eNOS) activity resulting from abnormal interaction between eNOS and its regulatory proteins in hypoxia-induced pulmonary hypertension. Murata, T., Sato, K., Hori, M., Ozaki, H., Karaki, H. J. Biol. Chem. (2002) [Pubmed]
  10. Effect of hereditary obesity on renal expressions of NO synthase, caveolin-1, AKt, guanylate cyclase, and calmodulin. Li, Z., Rodríguez-Iturbe, B., Ni, Z., Shahkarami, A., Sepassi, L., Vaziri, N.D. Kidney Int. (2005) [Pubmed]
  11. Nitric oxide down-regulates caveolin-1 expression in rat brains during focal cerebral ischemia and reperfusion injury. Shen, J., Ma, S., Chan, P., Lee, W., Fung, P.C., Cheung, R.T., Tong, Y., Liu, K.J. J. Neurochem. (2006) [Pubmed]
  12. Identification of caveolae and caveolin in C6 glioma cells. Silva, W.I., Maldonado, H.M., Lisanti, M.P., Devellis, J., Chompré, G., Mayol, N., Ortiz, M., Velázquez, G., Maldonado, A., Montalvo, J. Int. J. Dev. Neurosci. (1999) [Pubmed]
  13. Effects of chronic renal failure on caveolin-1, guanylate cyclase and AKT protein expression. Sindhu, R.K., Ehdaie, A., Vaziri, N.D., Roberts, C.K. Biochim. Biophys. Acta (2004) [Pubmed]
  14. Identification of caveolin-1-interacting sites in neuronal nitric-oxide synthase. Molecular mechanism for inhibition of NO formation. Sato, Y., Sagami, I., Shimizu, T. J. Biol. Chem. (2004) [Pubmed]
  15. Caveolin-1 interacts directly with dynamin-2. Yao, Q., Chen, J., Cao, H., Orth, J.D., McCaffery, J.M., Stan, R.V., McNiven, M.A. J. Mol. Biol. (2005) [Pubmed]
  16. Differential regulation of nitric oxide synthases and their allosteric regulators in heart and vessels of hypertensive rats. Piech, A., Dessy, C., Havaux, X., Feron, O., Balligand, J.L. Cardiovasc. Res. (2003) [Pubmed]
  17. Caveolin and GLT-1 gene expression is reciprocally regulated in primary astrocytes: association of GLT-1 with non-caveolar lipid rafts. Zschocke, J., Bayatti, N., Behl, C. Glia (2005) [Pubmed]
  18. Membrane-associated estrogen receptor and caveolin-1 are present in central nervous system myelin and oligodendrocyte plasma membranes. Arvanitis, D.N., Wang, H., Bagshaw, R.D., Callahan, J.W., Boggs, J.M. J. Neurosci. Res. (2004) [Pubmed]
  19. Developmental regulation of PV-1 in rat lung: association with the nuclear envelope and limited colocalization with Cav-1. Hnasko, R., Ben-Jonathan, N. Am. J. Physiol. Lung Cell Mol. Physiol. (2005) [Pubmed]
  20. Caveolin-1 expression by means of p38beta mitogen-activated protein kinase mediates the antiproliferative effect of carbon monoxide. Kim, H.P., Wang, X., Nakao, A., Kim, S.I., Murase, N., Choi, M.E., Ryter, S.W., Choi, A.M. Proc. Natl. Acad. Sci. U.S.A. (2005) [Pubmed]
  21. LPS inhibits endothelin-1-induced endothelial NOS activation in hepatic sinusoidal cells through a negative feedback involving caveolin-1. Kamoun, W.S., Karaa, A., Kresge, N., Merkel, S.M., Korneszczuk, K., Clemens, M.G. Hepatology (2006) [Pubmed]
  22. Regional myocardial ischemia-induced activation of MAPKs is associated with subcellular redistribution of caveolin and cholesterol. Ballard-Croft, C., Locklar, A.C., Kristo, G., Lasley, R.D. Am. J. Physiol. Heart Circ. Physiol. (2006) [Pubmed]
  23. Cholesterol depletion inhibits epidermal growth factor receptor transactivation by angiotensin II in vascular smooth muscle cells: role of cholesterol-rich microdomains and focal adhesions in angiotensin II signaling. Ushio-Fukai, M., Hilenski, L., Santanam, N., Becker, P.L., Ma, Y., Griendling, K.K., Alexander, R.W. J. Biol. Chem. (2001) [Pubmed]
  24. Ceramide displaces cholesterol from lipid rafts and decreases the association of the cholesterol binding protein caveolin-1. Yu, C., Alterman, M., Dobrowsky, R.T. J. Lipid Res. (2005) [Pubmed]
  25. Endothelin-1 activates mesangial cell ERK1/2 via EGF-receptor transactivation and caveolin-1 interaction. Hua, H., Munk, S., Whiteside, C.I. Am. J. Physiol. Renal Physiol. (2003) [Pubmed]
  26. Interaction of shrimp ras protein with mammalian caveolin-1. Chen, C.H., Wang, H.C., Chuang, N.N. J. Exp. Zool. (2000) [Pubmed]
  27. Angiotensin II type 1 receptor: relationship with caveolae and caveolin after initial agonist stimulation. Ishizaka, N., Griendling, K.K., Lassègue, B., Alexander, R.W. Hypertension (1998) [Pubmed]
  28. Oestrogen-mediated tyrosine phosphorylation of caveolin-1 and its effect on the oestrogen receptor localisation: an in vivo study. Kiss, A.L., Turi, A., Müllner, N., Kovács, E., Botos, E., Greger, A. Mol. Cell. Endocrinol. (2005) [Pubmed]
  29. Localization of caveolin-3 in the sinus endothelial cells of the rat spleen. Uehara, K., Miyoshi, M. Cell Tissue Res. (2002) [Pubmed]
  30. Targeting of nitric oxide synthase to endothelial cell caveolae via palmitoylation: implications for nitric oxide signaling. García-Cardeña, G., Oh, P., Liu, J., Schnitzer, J.E., Sessa, W.C. Proc. Natl. Acad. Sci. U.S.A. (1996) [Pubmed]
  31. The proprotein convertase furin colocalizes with caveolin-1 in the Golgi apparatus and endosomes of hepatocytes. Mayer, G., Boileau, G., Bendayan, M. Cell Tissue Res. (2004) [Pubmed]
  32. Alpha-synuclein up-regulates expression of caveolin-1 and down-regulates extracellular signal-regulated kinase activity in B103 neuroblastoma cells: role in the pathogenesis of Parkinson's disease. Hashimoto, M., Takenouchi, T., Rockenstein, E., Masliah, E. J. Neurochem. (2003) [Pubmed]
  33. Influence of caveolin on constitutively activated recombinant eNOS: insights into eNOS dysfunction in BDL rat liver. Hendrickson, H., Chatterjee, S., Cao, S., Morales Ruiz, M., Sessa, W.C., Shah, V. Am. J. Physiol. Gastrointest. Liver Physiol. (2003) [Pubmed]
  34. EGF triggers caveolin redistribution from the plasma membrane to the early/sorting endocytic compartment of hepatocytes. Pol, A., Calvo, M., Lu, A., Enrich, C. Cell. Signal. (2000) [Pubmed]
  35. Regulation of hepatic eNOS by caveolin and calmodulin after bile duct ligation in rats. Shah, V., Cao, S., Hendrickson, H., Yao, J., Katusic, Z.S. Am. J. Physiol. Gastrointest. Liver Physiol. (2001) [Pubmed]
  36. NrCAM coupling to the cytoskeleton depends on multiple protein domains and partitioning into lipid rafts. Falk, J., Thoumine, O., Dequidt, C., Choquet, D., Faivre-Sarrailh, C. Mol. Biol. Cell (2004) [Pubmed]
  37. Role of Src-induced dynamin-2 phosphorylation in caveolae-mediated endocytosis in endothelial cells. Shajahan, A.N., Timblin, B.K., Sandoval, R., Tiruppathi, C., Malik, A.B., Minshall, R.D. J. Biol. Chem. (2004) [Pubmed]
  38. Endothelial nitric oxide synthase and caveolin-1 are co-localized in sinusoidal endothelial fenestrae. Yokomori, H., Oda, M., Ogi, M., Kamegaya, Y., Tsukada, N., Ishii, H. Liver (2001) [Pubmed]
  39. Expression and localization of caveolins during postnatal development in rat heart: implication of thyroid hormone. Ratajczak, P., Oliviéro, P., Marotte, F., Kolar, F., Ostadal, B., Samuel, J.L. J. Appl. Physiol. (2005) [Pubmed]
WikiGenes - Universities